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Abstract In this paper we study perturbations of a large class of subordinate
Brownian motions in bounded κ-fat open sets, which include bounded John domains.
Suppose that X is such a subordinate Brownian motion and that J is the Lévy density
of X. The main result of this paper implies, in particular, that if Y is a symmetric Lévy
process with Lévy density JY satisfying |JY(x) − J(x)| ≤ c max{|x|−d+ρ, 1} for some
c > 0, ρ ∈ (0, d), then for any bounded John domain D the Green function GY

D of Y
in D is comparable to the Green function GD of X in D. One of the main tools of
this paper is the drift transform introduced in Chen and Song (J Funct Anal 201:262–
281, 2003). To apply the drift transform, we first establish a generalized 3G theorem
for X.
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1 Introduction

This paper is a natural continuation of [21–23]. In [21, 22], a boundary Harnack
principle for a large class of subordinate Brownian motions was proved, and in [23],
sharp two-sided estimates on the Green functions of these subordinate Brownian
motions in bounded κ-fat sets were established. The goal of this paper is, first, to
extend and prove the generalized 3G theorem (first proved in [19] for symmetric
stable processes) and, second, to establish sharp two-sided Green function estimates
for a large class of Lévy processes which can be considered as perturbations of the
subordinate Brownian motions considered in [21–23].

The 3G theorem is a very important tool in studying (local) Schrödinger operators.
It was established for Brownian motion in bounded Lipschitz domains for d ≥ 3 in
[5]. Later it was extended to bounded uniformly John domains for d ≥ 3 in [1] (See
[2, 15, 27, 32] for d = 2). For symmetric α-stable processes, α ∈ (0, 2), it was proved
for bounded C1,1 domains in [7, 8, 24]. More precisely, it was proved in [7, 8, 24]
that for every d > α and any bounded C1,1 domain D there exists a positive constant
c = c(D, α) such that

˜GD(x, y)˜GD(y, z)

˜GD(x, z)
≤ c

|x − z|d−α

|x − y|d−α|y − z|d−α
, x, y, z ∈ D, (1.1)

where ˜GD is the Green function of the symmetric α-stable process in D. Later Eq.
1.1 was extended to bounded Lipschitz domains for symmetric α-stable processes
(0 < α < 2) in [16] and even to bounded κ-fat open sets in [31].

When the process is discontinuous, there is a large class of additive functionals
which are not continuous. Such additive functionals give rise to a large family
of non-local Schrödinger operators. In order to deal with non-local Schrödinger
operators, one needs a generalized 3G theorem, which gives an upper bound on
˜G(x, y, z, w) := ˜GD(x, y)˜GD(z, w)/˜GD(x, w) where y and z can be different (see
Theorem 3.16). The generalized 3G theorem was proved in [19] for symmetric stable
processes in bounded κ-fat open sets (see also [16]) and it can be stated as that there
exist constants c = c(D, α) and η < α such that for all x, y, z, w ∈ D

˜G(x, y, z, w) ≤ c
( |x − w| ∧ |y − z|

|x − y| ∨ 1
)η ( |x − w| ∧ |y − z|

|z − w| ∨ 1
)η

× |x − w|d−α

|x − y|d−α|z − w|d−α
. (1.2)

We first extend Eq. 1.2 to the subordinate Brownian motions considered in [21–
23] in bounded κ-fat open sets D. Then we use this generalized 3G theorem to
find concrete sufficient conditions for the Kato classes of the subordinate Brownian
motions considered in [21–23] (See Theorems 4.4 and 4.5).

Sharp two-sided Green function estimates for a large class of subordinate Brown-
ian motions X in κ-fat sets D were established in [23]. The main goal of this paper
is to extend this result to more general Lévy processes. We prove that, for any
symmetric Lévy process Y which can be considered as a perturbation of the process
X considered in [23], the Green function GD(·, ·) of X in D and its counterpart
GY

D(·, ·) are comparable for any bounded κ-fat domain D. Let J be the Lévy density
of X, then the process Y above is a symmetric purely discontinuous Lévy process
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with Lévy density JY(x) = J(x) + σ(x) such that |σ(x)| ≤ c max{|x|−d+ρ, 1} for some
constants c > 0, ρ ∈ (0, d). Note that our main assumption is on the behavior of the
Lévy density of Y near 0 and we do not impose any restriction outside of the unit ball
other than that σ is bounded there. The Lévy density of Y may vanish outside of the
unit ball. In this case Y only has jumps of size less than 1 and it is a generalization
of the truncated stable processes studied in [17, 18]. One of the main tools used in
this paper is the drift transform introduced in [11]. We first use the drift transform
and our generalized 3G theorem to show that, under the additional assumption that
JY(x) ≥ J(x) for all x ∈ R

d, GY
D is comparable to GD for any bounded κ-fat (not

necessarily connected) open sets D (Theorem 5.6). Then we deal with the general
case where σ can take both signs (Theorem 5.13).

The organization of this paper is as follows. In Section 2, we collect some
preliminary results on subordinate Brownian motions. Section 3 contains the proof
of the generalized 3G theorem. In Section 4 we use the generalized 3G theorem to
give sufficient conditions for the Kato classes. The main result is proved in the last
section.

In this paper we always assume that α ∈ (0, 2) and d is a positive integer with
d > α. We will use the following convention: The values of the constants C0, C1, M,
r0, r1, r2, · · · and ε1 will remain the same throughout this paper, while c, c1, c2, · · ·
stand for constants whose values are unimportant and which may change from
location to location. The labeling of the constants c0, c1, c2, · · · starts anew in the
statement of each result. We use “:=" to denote a definition, which is read as “is
defined to be". We denote a ∧ b := min{a, b}, a ∨ b := max{a, b}. f (t) � g(t), t → 0
( f (t) � g(t), t → ∞, respectively) means that the quotient f (t)/g(t) stays bounded
between two positive constants as t → 0 (as t → ∞, respectively). For any open
set U , we denote by δU (x) the distance of a point x to the boundary of U , i.e.,
δU (x) = dist(x, ∂U).

2 Preliminaries

In this section, we define the subordinate Brownian motions we are going to work
with and recall some preliminary results about them from [21, 23].

Suppose that S = (St : t ≥ 0) is a subordinator with Laplace exponent φ, that is, S
is a nonnegative Lévy process with S0 = 0 and

E
[

e−λSt
] = e−tφ(λ), ∀ t, λ > 0.

In this paper we will always assume that φ is a complete Bernstein function, that is,
the Lévy measure μ of S has a completely monotone density μ(t), i.e., (−1)n Dnμ ≥ 0
for every non-negative integer n. For basic results on complete Bernstein functions,
we refer our readers to [29]. Recall that a function � : (0,∞) → (0,∞) is slowly
varying at infinity if

lim
t→∞

�(λt)
�(t)

= 1 , for every λ > 0 .
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We will also always assume that φ satisfies the following asymptotic behavior at
infinity:

Assumption (H1) There exist α ∈ (0, 2 ∧ d) and a function � : (0,∞) → (0,∞)

which is measurable, locally bounded above and below by positive constants and
slowly varying at infinity such that

φ(λ) � λα/2�(λ) , λ → ∞ . (2.1)

Using [30, Corollary 2.3] or [25, Theorem 2.3] we know that the potential measure
of S has a completely monotone density u.

Suppose that W = (Wt : t ≥ 0) is a Brownian motion in R
d with

E
[

eiξ ·(Wt−W0)
] = e−t|ξ |2 , ∀ ξ ∈ R

d, t > 0 ,

and that W is independent of S. The process X = (Xt : t ≥ 0) defined by Xt = WSt is
called a subordinate Brownian motion. The process X is a (rotationally) symmetric
Lévy process with characteristic exponent �(ξ) = φ(|ξ |2), ξ ∈ Rd. It is easy to check
that when d ≥ 3 the process X is transient. In the case α < d ≤ 2, we will always
assume the following:

Assumption (H2) There exists γ ∈ [0, d/2) such that

lim inf
λ→0

φ(λ)

λγ
> 0. (2.2)

An immediate consequence of (H2) and [22, Corollary 2.6] is that the potential
density u of S satisfies u(t) ≤ ctγ−1 for all t ≥ 1, where c > 0 is some positive constant.

Under the assumption (H2) the process X is also transient for d ≤ 2. This
ensures that the Green function G(x, y), x, y ∈ R

d, of X is well defined. By spatial
homogeneity we may write G(x, y) = G(x − y), where the function G is radial and
given by the following formula

G(x) =
∫ ∞

0
(4π t)−d/2e−|x|2/(4t)u(t)dt, x ∈ R

d.

Using this formula we see that G is radially decreasing and continuous in R
d \ {0}.

The Lévy measure of the process X has a density J, called the Lévy density of X,
given by J(x) = j(|x|) where

j(r) :=
∫ ∞

0
(4π t)−d/2e−r2/(4t)μ(t)dt, r > 0

and μ(t) is the Lévy density of S. Note that the function r �→ j(r) is continuous and
decreasing on (0,∞). We will sometimes use the notation J(x, y) for J(x − y).
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The following theorem establishes the asymptotic behaviors of G and j near the
origin (see [23, Theorem 2.9, 2.11]).

Theorem 2.1

(i)

G(x) � 1
|x|dφ(|x|−2)

� 1
|x|d−α�(|x|−2)

, |x| → 0.

(ii)

J(x) = j(|x|) � φ(|x|−2)

|x|d � �(|x|−2)

|x|d+α
, |x| → 0.

For any open set D, we use τD to denote the first exit time of D, i.e., τD = inf{t >

0 : Xt /∈ D}. Given an open set D ⊂ R
d, we define X D

t (ω) = Xt(ω) if t < τD(ω)

and X D
t (ω) = ∂ if t ≥ τD(ω), where ∂ is a cemetery state. X D is called the killed

subordinate Brownian motion X in D. We now recall the definition of harmonic
functions with respect to X.

Definition 2.2 Let D be an open subset of R
d. A function u defined on R

d is said
to be

(1) harmonic in D with respect to X if

Ex
[|u(XτB)|] < ∞ and u(x) = Ex

[

u(XτB)
]

, x ∈ B

for every open set B whose closure is a compact subset of D;
(2) regular harmonic in D with respect to X if it is harmonic in D with respect to

X and for each x ∈ D,

u(x) = Ex
[

u(XτD)
]

.

The following version of Harnack inequality is [23, Theorem 2.14].

Theorem 2.3 For any L > 0, there exists a positive constant c = c(d, φ, L) > 0 such
that the following is true: If x1, x2 ∈ R

d and r ∈ (0, 1) are such that |x1 − x2| < Lr,
then for every nonnegative function u which is harmonic with respect to X in B(x1, r) ∪
B(x2, r), we have

c−1u(x2) ≤ u(x1) ≤ cu(x2).

For any open set D in R
d, we will use GD(x, y) to denote the Green function

of X D. Using the continuity and the radial decreasing property of G, we can easily
check that GD is continuous in (D × D) \ {(x, x) : x ∈ D}. We will frequently use
the well-known fact that GD(·, y) is harmonic in D \ {y}, and regular harmonic in
D \ B(y, ε) for every ε > 0.

The following concept was introduced in [31].

Definition 2.4 Let κ ∈ (0, 1/2]. We say that an open set D in R
d is κ-fat if there

exists r0 > 0 such that for each Q ∈ ∂ D and r ∈ (0, r0), D ∩ B(Q, r) contains a ball
B(Ar(Q), κr). The pair (r0, κ) is called the characteristics of the κ-fat open set D.
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The following boundary Harnack principle is [22, Theorem 4.22].

Theorem 2.5 ([21, Theorem 4.8], [22, Theorem 4.22]) Suppose that D is a κ-fat open
set with characteristics (r0, κ). There exists a constant c = c(d, r0, κ, φ) > 1 such that,
if r ∈ (0, r0 ∧ 1

4 ] and Q ∈ ∂ D, then for any nonnegative functions u, v in R
d which are

regular harmonic in D ∩ B(Q, 2r) with respect to X and vanish in Dc ∩ B(Q, 2r), we
have

c−1 u(Ar(Q))

v(Ar(Q))
≤ u(x)

v(x)
≤ c

u(Ar(Q))

v(Ar(Q))
, x ∈ D ∩ B

(

Q,
r
2

)

.

3 Generalized 3G Theorem

In this section, we prove a generalized 3G theorem for X in a bounded κ-fat open
set D. This theorem will play an important role later in this paper.

We first present some preliminary results which are valid for any bounded
open set D. The following proposition is a combination of [23, Proposition 3.2 and
Lemma 3.3].

Proposition 3.1 Suppose D is a bounded open set in R
d. (i) There exists a positive

constant C0 = C0(diam(D), φ, d) such that

GD(x, y) ≤ C0
1

|x − y|d−α�(|x − y|−2)
, x, y ∈ D. (3.1)

(ii) For every L > 0, there exists c = c(diam(D), φ, L, d) > 0 such that for every
|x − y| ≤ L(δD(x) ∧ δD(y)),

GD(x, y) ≥ c
1

|x − y|d−α�(|x − y|−2)
.

In the remainder of this section, we assume D is a bounded κ-fat open set
with characteristics (r0, κ). Without loss of generality we may assume that r0 ≤ 1/4.
Recall that for each Q ∈ ∂ D and r ∈ (0, r0), Ar(Q) is a point in D ∩ B(Q, r) satisfy-
ing B(Ar(Q), κr) ⊂ D ∩ B(Q, r). Since GD(z, ·) is regular harmonic in D \ B(z, ε)

for every ε > 0 and vanishes outside D, the following result follows easily from
Theorem 2.5.

Theorem 3.2 There exists a constant c = c(d, r0, κ, φ) > 1 such that for any Q ∈ ∂ D,
r ∈ (0, r0] and z, w ∈ D \ B(Q, 2r), we have

c−1 GD(z, Ar(Q))

GD(w, Ar(Q))
≤ GD(z, x)

GD(w, x)
≤ c

GD(z, Ar(Q))

GD(w, Ar(Q))
, x ∈ D ∩ B

(

Q,
r
2

)

.

Using the uniform convergence theorem [3, Theorem 1.2.1], we can choose r1 ≤ r0

such that if r ≤ r1 then

1
2

≤ min
1
6 ≤λ≤2κ−1

�((λr)−2)

�(r−2)
≤ max

1
6 ≤λ≤2κ−1

�((λr)−2)

�(r−2)
≤ 2. (3.2)



Sharp Estimates on the Green Functions of Perturbations of SBMs 325

Fix z0 ∈ D with κr1 < δD(z0) < r1 and let ε1 := κr1/24. For x, y ∈ D, we define
r(x, y) := δD(x) ∨ δD(y) ∨ |x − y| and

B(x, y)

:=
{

{

A ∈ D : δD(A) > κ
2 r(x, y), |x − A| ∨ |y − A| < 5r(x, y)

}

if r(x, y) < ε1

{z0} if r(x, y) ≥ ε1.

(3.3)

Note that if r(x, y) < ε1

1
6
δD(A) ≤ δD(x) ∨ δD(y) ∨ |x − y| ≤ 2κ−1δD(A), A ∈ B(x, y). (3.4)

Thus by Eq. 3.2, if r(x, y) < ε1,

1
2

≤ �((δD(A))−2)

�((r(x, y))−2)
≤ 2, A ∈ B(x, y). (3.5)

Let

C1 := C02d−αδD(z0)
−d+α · sup

δD(z0)/2≤r≤diam(D)

�(r−2)−1

so that, by Proposition 3.1(i), GD(·, z0) is bounded from above by C1 on the set
D \ B(z0, δD(z0)/2). Now we define

g(x) := GD(x, z0) ∧ C1.

Note that if δD(z) ≤ 6ε1, then |z − z0| ≥ δD(z0) − 6ε1 ≥ δD(z0)/2 since 6ε1 <

δD(z0)/4, and therefore g(z) = GD(z, z0).
The following result is established in [23].

Theorem 3.3 [23, Theorem 1.2] There exists c = c(diam(D), d, r0, κ, φ) > 0 such that
for every x, y ∈ D

c−1 g(x)g(y)

g(A)2|x − y|dφ(|x − y|−2)
≤ GD(x, y)

≤ c
g(x)g(y)

g(A)2|x − y|dφ(|x − y|−2)
, A ∈ B(x, y). (3.6)

Lemma 3.4 There exist positive constants c = c(d, r0, κ, φ), β = β(d, r0, κ, φ) < α and
r2 ∈ (0, r1] such that for any Q ∈ ∂ D, r ∈ (0, r2), and nonnegative function u on R

d

which is harmonic with respect to X in D ∩ B(Q, r) we have

u(Ar(Q)) ≤ c
(r

s

)β �(s−2)

�(r−2)
u(As(Q)), s ∈ (0, r). (3.7)

Proof Without loss of generality, we assume Q = 0. Let ak := (

κ
2

)k for k = 0, 1, · · · .

By using [22, Proposition 4.10] instead of [21, Proposition 3.8] and repeating the
proof of [21, Lemma 5.2], we easily see that [21, Lemma 5.2] is valid in the present
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case. Thus there exist positive constants c = c(d, r0, κ, φ), β = β(d, r0, κ, φ) < α, and
R1 ∈ (0, r1] such that for every k = 0, 1, · · · ,

u(Ar(0)) ≤ c1

(

r
akr

)β
�((akr)−2)

�(r−2)
u(Aakr(0)), r ∈ (0, R1].

Since � is slowly varying at ∞, there exist R2 = R2(d, β, �) ∈ (0, R1] and c2 =
c2(d, β, �) > 0 such that

sβ

�(s−2)
≤ c2

rβ

�(r−2)
, ∀ 0 < s < r ≤ R2. (3.8)

Thus if r ≤ R2 and ak+1r < s ≤ akr, by Eq. 3.8 and Theorem 2.3,

u(Ar(0)) ≤ c3
rβ

�(r−2)

�((akr)−2)

(akr)β
u(As(0)) ≤ c4

rβ

�(r−2)

�(s−2)

sβ
u(As(0))

for some positive constants c3, c4 independent of s. ��

Applying [22, Lemma 4.19] to Green functions, we have the following.

Lemma 3.5 (Carleson’s Estimate) There exists c = c(d, r0, κ, φ) > 1 such that for
every Q ∈ ∂ D, r ∈ (0, 1/4), and y ∈ D \ B(Q, 4r)

GD(x, y) ≤ c GD(Ar(Q), y), x ∈ D ∩ B(Q, r). (3.9)

For every x, y ∈ D, let Qx and Qy be points on ∂ D such that δD(x) = |x −
Qx| and δD(y) = |y − Qy| respectively. It is easy to check that if r(x, y) < ε1,
Ar(x,y)(Qx), Ar(x,y)(Qy) ∈ B(x, y). (For example, see [19, p. 123].) Moreover, since
g(A1) � g(A2) for all A1, A2 ∈ B(x, y) by Theorem 2.3, we have in particular

g(Ar(x,y)(Qx)) � g(Ar(x,y)(Qy)) � g(Ax,y) for all Ax,y ∈ B(x, y). (3.10)

This simple but useful fact will be used later in this section.
Using our Theorem 2.3 and Lemma 3.5, the proofs of the next four lemmas are

the same as those of [19, Lemmas 3.8–3.11], so we omit the proofs.

Lemma 3.6 There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for every x, y ∈ D
with r(x, y) < ε1,

g(z) ≤ c g(Ar(x,y)(Qx)), z ∈ D ∩ B(Qx, r(x, y)). (3.11)

Lemma 3.7 There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for every x, y ∈ D

g(x) ∨ g(y) ≤ c g(A), A ∈ B(x, y).

Lemma 3.8 If x, y, z ∈ D satisfy r(x, z) ≤ r(y, z), then there exists c =
c(diam(D), d, r0, κ, φ) > 0 such that

g(Ax,y) ≤ c g(Ay,z) for every (Ax,y, Ay,z) ∈ B(x, y) × B(y, z).
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Lemma 3.9 There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for every
x, y, z, w ∈ D and (Ax,y, Ay,z, Az,w, Ax,w) ∈ B(x, y) × B(y, z) × B(z, w) × B(x, w),

g(Ax,w)2 ≤ c
(

g(Ax,y)
2 + g(Ay,z)

2 + g(Az,w)2) . (3.12)

Combining Theorem 3.3, Lemmas 3.7 and 3.8, and applying Theorem 2.1(i), we
have the following 3G Theorem.

Theorem 3.10 (3G theorem) There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for
every x, y, z ∈ D

GD(x, y)GD(y, z)

GD(x, z)
≤ c

G(x, y)G(y, z)

G(x, z)

� φ(|x − z|−2)

φ(|x − y|−2)φ(|y − z|−2)

|x − z|d
|x − y|d|y − z|d . (3.13)

In the remainder of this paper, β will always stand for the constant from
Lemma 3.4.

Lemma 3.11 There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for every x, y ∈ D
with r(x, y) < ε1,

g(Ax,y) ≥ c
r(x, y)β

�((r(x, y))−2)
, for all Ax,y ∈ B(x, y).

Proof Let A := Ar(x,y)(Qx). Note that g(·) = GD(·, z0) is harmonic in D ∩
B(Qx, 2ε1). Since r(x, y) < ε1, by Lemma 3.4 (recall ε1 = κr1/24),

g(A) = GD(A, z0) ≥ c
(

r(x, y)

2ε1

)β
�((2ε1)

−2

�((r(x, y))−2)
GD(A2ε1(Qx), z0).

Note that δD(z0) ≥ r1κ = 24ε1 and δD(A2ε1(Qx)) > 2κε1. Thus by Proposition 3.1(ii)
we have GD(A2ε1(Qx), z0) > c1 > 0. This completes the proof of Eq. 3.10. ��

Lemma 3.12 There exists c = c(diam(D), d, r0, κ, φ) > 0 such that for every x, y, z ∈
D and (Ax,y, Ay,z) ∈ B(x, y) × B(y, z)

g(Ay,z)

g(Ax,y)
≤ c

(

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
∨ 1

)

.

Proof Note that if r(x, y) ≥ ε1, g(Ay,z) ≤ C1 = g(Ax,y). We will consider three cases
separately:

(a) r(x, y) < ε1 and r(y, z) ≥ ε1: By Lemma 3.11, we have

g(Ay,z)

g(Ar(x,y)(Qy))
≤ c C1

�((r(x, y))−2)

r(x, y)β

≤ c C1ε
−β

1

(

sup
ε1≤s≤diam(D)

�(s−2)

)

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
.
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(b) r(y, z) ≤ r(x, y) < ε1: Then Ar(y,z)(Qy) ∈ D ∩ B(Qy, r(x, y)). Thus by Lemma
3.5 we have g(Ar(y,z)(Qy)) ≤ cg(Ar(x,y)(Qy)).

(c) r(x, y) < r(y, z) < ε1: By Lemma 3.4,

g(Ar(y,z)(Qy))

g(Ar(x,y)(Qy))
≤ c

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
.

Now the conclusion of the lemma follows immediately from Eq. 3.10. ��

Thus, by Lemmas 3.7 and 3.12, we get the following lemma.

Lemma 3.13 There exists a constant c = c(diam(D), d, r0, κ, φ) > 0 such that for
every x, y, z, w ∈ D and (Ax,y, Az,w, Ax,w) ∈ B(x, y) × B(z, w) × B(x, w),

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2 ≤ c
(

r(x, w)β

r(x, y)β

�((r(x, y))−2)

�((r(x, w))−2)
∨ 1

)(

r(x, w)β

r(z, w)β

�((r(z, w))−2)

�((r(x, w))−2)
∨ 1

)

.

Lemma 3.14 There exists a constant c = c(diam(D), d, r0, κ, φ) > 0 such that for
every x, y, z, w ∈ D and (Ax,y, Az,w, Ax,w) ∈ B(x, y) × B(z, w) × B(x, w),

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2 ≤ c
(

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
∨ 1

)(

r(y, z)β

r(z, w)β

�((r(z, w))−2)

�((r(y, z))−2)
∨ 1

)

.

Proof From Lemma 3.9, we get

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2 ≤ c1
g(y)g(z)

g(Ax,y)2g(Az,w)2 (g(Ax,y)
2 + g(Ay,z)

2 + g(Az,w)2)

= c1

(

g(y)g(z)

g(Az,w)2 + g(y)g(z)

g(Ax,y)2 + g(y)g(z)g(Ay,z)
2

g(Ax,y)2g(Az,w)2

)

. (3.14)

By applying Lemma 3.7 to both y and z, we have that Eq. 3.14 is less than or equal to

c2
g(y)

g(Az,w)
+ c2

g(z)

g(Ax,y)
+ c3

(

g(Ay,z)

g(Ax,y)

) (

g(Ay,z)

g(Az,w)

)

≤ c2
g(y)

g(Az,w)
+ c2

g(z)

g(Ax,y)
+ c4

(

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
∨ 1

)

×
(

r(y, z)β

r(z, w)β

�((r(z, w))−2)

�((r(y, z))−2)
∨ 1

)

,

where we used Lemma 3.12 in the last inequality above. Moreover, by Lemmas 3.7
and 3.12,

g(y)

g(Az,w)
=

(

g(y)

g(Ay,z)

)(

g(Ay,z)

g(Az,w)

)

≤ c
(

r(y, z)β

r(z, w)β

�((r(z, w))−2)

�((r(y, z))−2)
∨ 1

)

and

g(z)

g(Ax,y)
=

(

g(z)

g(Ay,z)

) (

g(Ay,z)

g(Ax,y)

)

≤ c
(

r(y, z)β

r(x, y)β

�((r(x, y))−2)

�((r(y, z))−2)
∨ 1

)

.
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Combining these, Eq, 3.14 and the inequality ( a
b ∨ 1) + ( a

c ∨ 1) ≤ 2( a
b ∨ 1)( a

c ∨ 1),

valid for all a, b , c > 0, we have finished the proof. ��

Lemma 3.15 Let ψ(r) = rβ

�(r−2)
and M ∈ (0,∞). Then there exists a constant c =

c(M, �, β) > 0 such that

ψ(a2)

ψ(b 2)
≤ c

(

ψ(a1)

ψ(b 1)
∨ 1

)

for every 0 < a1 ≤ a2 ≤ 2a1 ≤ M and 0 < b 1 ≤ b 2 ≤ M.

Proof Since � is slowly varying at ∞, by [3, Theorem 1.5.3] there exists R1 < M/2
such that

sβ

�(s−2)
≤ 2

rβ

�(r−2)
and

�(r−2)

�((2r)−2)
≤ 2 ∀s < r ≤ R1. (3.15)

Note that ψ : (0,∞) → (0,∞) is locally bounded from above and below by positive
constants.

If a1 ≤ R1/2, since a2 < 2a1 ≤ R1, by Eq. 3.15, ψ(a2) ≤ 2β+2ψ(a1). If a1 > R1/2,
by the local boundedness of ψ , ψ(a2) � ψ(a1).

Similarly, if b 2 ≤ R1, since b 1 ≤ b 2 ≤ R1, by Eq. 3.15, 2ψ(b 2) ≥ ψ(b 1). If b 2 >

R1, by the local boundedness of ψ and Eq. 3.15, there exists a c1 such that ψ(b 2) ≥
c1ψ(b 1). The lemma clearly follows from these observations. ��

Now we are ready to prove the main result of this section, which is a generalization
of the main result in [19].

Theorem 3.16 (Generalized 3G Theorem) Let ψ(r) := rβ

�(r−2)
. Suppose that D is a

bounded κ-fat open set with characteristics (r0, κ). Then there exists a positive constant
c = c(diam(D), d, r0, κ, φ) such that for every x, y, z, w ∈ D

GD(x, y)GD(z, w)

GD(x, w)
≤ c

(

ψ(|x − w|) ∧ ψ(|y − z|)
ψ(|x − y|) ∨ 1

)

×
(

ψ(|x − w|) ∧ ψ(|y − z|)
ψ(|z − w|) ∨ 1

)

G(x, y)G(z, w)

G(x, w)
. (3.16)

Proof Let

G(x, y, z, w) := GD(x, y)GD(z, w)

GD(x, w)
and H(x, y, z, w) := G(x, y)G(z, w)

G(x, w)
.

If |x − w| ≤ δD(x) ∧ δD(w), by Proposition 3.1(ii) and Theorem 2.1(i), GD(x, w) ≥
cG(x, w). Thus by Eq. 3.1 and Theorem 2.1(i) we have G(x, y, z, w) ≤ cH(x, y, z, w).

On the other hand, if |y − z| ≤ δD(y) ∧ δD(z), then by Proposition 3.1(ii) and
Theorem 2.1(i), GD(y, z) ≥ cG(y, z). Using this and Theorem 3.10, we have that
there exists a constant c = c(diam(D), d, r0, κ, φ) > 0 such that

G(x, y, z, w) = GD(x, y)GD(y, z)

GD(x, z)

GD(x, z)GD(z, w)

GD(x, w)

1
GD(y, z)

≤ c
G(x, y)G(y, z)

G(x, z)

G(x, z)G(z, w)

G(x, w)

1
G(y, z)

= cH(x, y, z, w).
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Now we assume that |x − w| > δD(x) ∧ δD(w) and |y − z| > δD(y) ∧ δD(z). Since
δD(x) ∨ δD(w) ≤ δD(x) ∧ δD(w) + |x − w|, using the assumption δD(x) ∧ δD(w) <

|x − w|, we obtain r(x, w) < 2|x − w|. Similarly, r(y, z) < 2|y − z|. Let Ax,w ∈
B(x, w), Ax,y ∈ B(x, y) and Az,w ∈ B(z, w). Applying Lemmas 3.13 and 3.14 to
Theorem 3.3, we have

G(x, y, z, w) ≤ c
g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2 H(x, y, z, w)

≤ c
[(

ψ(r(x, w))

ψ(r(x, y))
∧ ψ(r(y, z))

ψ(r(x, y))

)

∨ 1
]

×
[(

ψ(r(x, w))

ψ(r(z, w))
∧ ψ(r(y, z))

ψ(r(z, w))

)

∨ 1
]

H(x, y, z, w).

Now applying Lemma 3.15, we arrive at the conclusion of the theorem. ��

4 Feynman-Kac Perturbations

Throughout this section D is a bounded κ-fat open set. In this section, we will first
recall the Kato classes introduced in [4, 9, 10]. Then we apply the 3G theorem and
generalized 3G theorem to establish some concrete sufficient conditions for these
classes. Note that X D is an irreducible transient symmetric Hunt process satisfying
the assumption at the beginning of [4, Section 3.2].

Definition 4.1 A function q is said to be in the class S∞(X D) if for any ε > 0 there
are a Borel subset K = K(ε) of finite Lebesgue measure and a constant δ = δ(ε) > 0
such that

sup
(x,z)∈(D×D)\{x=z}

∫

D\K

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy ≤ ε

and that, for all measurable set B ⊂ K with |B| < δ,

sup
(x,z)∈(D×D)\{x=z}

∫

B

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy ≤ ε.

Definition 4.2 Suppose F is a bounded function on D × D vanishing on the diagonal.
Let

q|F|(x) :=
∫

D
|F(x, y)|J(x, y)dy.

(1) F is said to be in the class A∞(X D) if for any ε > 0 there are a Borel subset
K = K(ε) of finite Lebesgue measure and a constant δ = δ(ε) > 0 such that

sup
(x,w)∈(D×D)\{x=w}

∫

(D×D)\(K×K)

GD(x, y)GD(z, w)

GD(x, w)
|F(y, z)|J(y, z)dzdy ≤ ε
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and that, for all measurable sets B ⊂ K with |B| < δ,

sup
(x,w)∈(D×D)\{x=w}

∫

(B×D)∪(D×B)

GD(x, y)GD(z, w)

GD(x, w)
|F(y, z)|J(y, z)dzdy ≤ ε.

(2) F is said to be in the class A2(X D) if F ∈ A∞(X D) and if the function q|F| is in
S∞(X D).

Now we are going to use the 3G theorem and generalized 3G theorem to give some
concrete sufficient conditions for S∞(X D) and A2(X D). First we prove the following
simple lemma.

Lemma 4.3 There exists a positive constant c = c(α, d, �) such that

�(|x − z|−2)|x − z|d−α ≤ c
(

�(|x − y|−2)|x − y|d−α + �(|y − z|−2)|y − z|d−α
)

.

Proof By symmetry, without loss of generality, we assume |x − y| ≤ |y − z|. Since �

is slowly varying at ∞, by [3, Theorem 1.5.3] there exists R1 > 0 such that

sd−α�(s−2) ≤ 2 rd−α�(r−2) and �((2r)−2) ≤ 2 �(r−2) ∀s < r ≤ R1. (4.1)

From Eq. 4.1, we see that

�(|x − z|−2)|x − z|d−α < c1. (4.2)

If |y − z| ≤ R1, then |x − z| ≤ |x − y| + |y − z| ≤ 2|y − z| ≤ 2R1. Thus by Eq. 4.1,

�(|x − z|−2)|x − z|d−α ≤ 21+d−α�((2|y − z|)−2)|y − z|d−α

≤ 22+d−α�(|y − z|−2)|y − z|d−α.

If |y − z| > R1, by the local boundedness of � and Eq. 4.1, we have

�(|x − z|−2)|x − z|d−α < c1 < c2�(|y − z|−2)|y − z|d−α.

��

Theorem 4.4 A function q on D is in S∞(X D) if

lim
r↓0

sup
x∈D

∫

|x−y|≤r

|q(y)|dy
|x − y|dφ(|x − y|−2)

= 0. (4.3)

Proof Without loss of generality, we assume that q is a positive function on D. It
follows from Theorem 3.10, (H1), Lemma 4.3, and the assumption on � that for every
x, y, z ∈ D we have

GD(x, y)GD(y, z)

GD(x, z)
≤ c1

φ(|x − z|−2)

φ(|x − y|−2)φ(|y − z|−2)

|x − z|d
|x − y|d|y − z|d

≤ c2

(

1
φ(|x − y|−2)|x − y|d + 1

φ(|y − z|−2)|y − z|d
)

. (4.4)
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We claim that a positive function q satisfying Eq. 4.3 is integrable on D. Let

M(r) := sup
w∈D

∫

|w−y|≤r

q(y)dy
|w − y|dφ(|w − y|−2)

.

By (H1) and [3, Theorem 1.5.3], there exists s0 > 0 such that

udφ(u−2) ≤ 2sdφ(s−2), u ≤ s ≤ s0. (4.5)

Then, using Eq. 4.3, we can choose s1 ≤ s0 such that M(s1) < ∞. Now by Eq. 4.5,

sup
x∈D

∫

|x−y|≤s1

q(y)dy ≤ sup
x∈D

∫

|x−y|≤s1

2sd
1φ(s−2

1 )q(y)dy
|x − y|dφ(|x − y|−2)

≤ 2sd
1φ(s−2

1 )M(s1) < ∞,

which implies that q is integrable on D.
By Eq. 4.4, we have for every Borel subset A of D and every (x, z) ∈ D × D,

∫

A

GD(x, y)GD(y, z)

GD(x, z)
q(y)dy ≤ 2 c2 M(r) + 2 c2 sup

w∈D

∫

A∩B(w,r)c

q(y)dy
φ(|w − y|−2)|w − y|d

≤ 2 c2 M(r) +
∫

A
q(y)dy

(

sup
s∈[r,diam(D)]

2c2

φ(s−2)sd

)

=: 2 c2 M(r) +
(∫

A
q(y)dy

)

a(r).

Given ε, choose r1 = r1(ε) ∈ (0, diam(D)) such that 2 c2 M(r1) < ε/2 and let δ :=
2−1ε/a(r1). This completes the proof of the theorem. ��

The proof of the following theorem is similar to that of [19, Theorem 4.3].

Theorem 4.5 If D is a bounded κ-fat open set with characteristics (r0, κ) and F is a
function on D × D with

|F(x, y)| ≤ c1
|x − y|ε

φ(|x − y|−2)
(4.6)

for some ε > 0 and c1 > 0, then F ∈ A2(X D) and

∫

D

∫

D

GD(x, y)GD(z, w)

GD(x, w)
|F(y, z)|J(y, z)dydz ≤ c2|x − w|α+εφ(|x − w|−2) (4.7)

for some c2 > 0.
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Proof We assume, without loss of generality, ε < d − α. By the generalized 3G
theorem (Theorem 3.16), there exists a positive constant c = c(diam(D), d, r0, κ, φ)

such that

GD(x, y)GD(z, w)

GD(x, w)
≤ c1

(

�(|x − w|−2)

�(|x − y|−2)�(|z − w|−2)

|x − w|d−α

|x − y|d−α|z − w|d−α

+ |x − w|d−α+β

|x − y|d−α+β |z − w|d−α�(|z − w|−2)

+ |x − w|d−α+β

|x − y|d−α|z − w|d−α+β�(|x − y|−2)

+ |x − w|d−α+2β

|x − y|d−α+β |z − w|d−α+β�(|x − w|−2)

)

.

Thus, by Theorem 2.1(ii) and Eq. 4.6, we have

GD(x, y)GD(z, w)

GD(x, w)
|F(y, z)|J(y, z) ≤ c2

4
∑

i=1

Ai(x, y, z, w)

where

A1(x, y, z, w) := �(|x − w|−2)

�(|x − y|−2)�(|z − w|−2)

|x − w|d−α

|x − y|d−α|z − w|d−α|y − z|d−ε
,

A2(x, y, z, w) := |x − w|d−α+β�(|z − w|−2)−1

|x − y|d−α+β |z − w|d−α|y − z|d−ε
,

A3(x, y, z, w) := |x − w|d−α+β�(|x − y|−2)−1

|z − w|d−α+β |x − y|d−α|y − z|d−ε
,

A4(x, y, z, w) := |x − w|d−α+2β�(|x − w|−2)−1

|x − y|d−α+β |z − w|d−α+β |y − z|d−ε
.

First let

c3 := sup
(̃x,ỹ)∈D×D

|̃x − ỹ|α/2

�(|̃x − ỹ|−2)
< ∞.

Then we have
∫

D

∫

D
A1(x, y, z, w)dydz

=
∫

D

∫

D

�(|x − w|−2)

�(|x − y|−2)�(|z − w|−2)

|x − w|d−α

|x − y|d−α|z − w|d−α|y − z|d−ε
dydz

≤ c2
3|x − w|d−α�(|x − w|−2)

∫

D

∫

D
|x − y|−d+ α

2 |z − w|−d+ α
2 |y − z|−d+εdydz

≤ c2
3|x − w|ε�(|x − w|−2) ≤ c4|x − w|α+εφ(|x − w|−2).

The second to last inequality comes from [14, Lemma 3.12], and the last follows
from (H1). Similar techniques can be applied to the case A2, A3, A4 and this proves
Eq. 4.7.
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Now using Lemma 4.3, we have

A1(x, y, z, w) ≤ 1
�(|z − w|−2)|z − w|d−α

1
|y − z|d−ε

+ 1
�(|x − y|−2)|x − y|d−α

1
|y − z|d−ε

+ 1
�(|x − y|−2)|x − y|d−α

1
�(|z − w|−2)|z − w|d−α

1
|y − z|α−ε

.

Since ε > 0 and � is slowly varying at ∞, the following two families

{(y, z) �→ �(|x − y|−2)−1|x − y|α−d|y − z|ε−d, x ∈ D},
{(y, z) �→ �(|z − w|−2)−1|z − w|α−d|y − z|ε−d, w ∈ D}

are uniformly integrable over cylindrical sets of the form B × D and D × B, for any
Borel set B ⊂ D. Now let us show that the following family of functions are uniformly
integrable over cylindrical sets of the form B × D and D × B:

{

(y, z) �→ 1
�(|x − y|−2)|x − y|d−α�(|z − w|−2)|z − w|d−α|y − z|α−ε

, x, w ∈ D
}

.

(4.8)

Let us consider the family (4.8) when the exponent of |y − z| is negative, i.e., ε < α.
Otherwise the family (4.8) is uniformly integrable since |y − z|ε−α < c.

Applying Young’s inequality, we obtain

1
�(|x − y|−2)|x − y|d−α�(|z − w|−2)|y − z|α−ε |z − w|d−α

=
(

1
�(|x − y|−2)|x − y|d−α�(|z − w|−2)|z − w|d−α

)(

1
|y − z|α−ε

)

≤ 1
p

(

1
(�(|x − y|−2))p|x − y|(d−α)p(�(|z − w|−2))p|z − w|(d−α)p

)

+ 1
q

(

1
|y − z|(α−ε)q

)

.

Since � is slowly varying at ∞, it suffices to find p, q > 1 satisfying 1
p + 1

q = 1 and
(d − α)p < d, (α − ε)q < d. By choosing p in the interval

((

1 ∨ d
d − α + ε

)

,
d

d − α

)

,

we get that the family (4.8) is uniformly integrable. Note that this interval is

not empty since
d

d − α + ε
<

d
d − α

by (α + ε) ∧ d > α and
d

d − α
> 1. Similar
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techniques can be applied to the case A2, A3, A4 and this proves F ∈ A∞(X D). (See
[19, pp. 131–132].) Since

q|F|(dx) =
∫

D
|F(x, y)|J(x, y)dy ≤

∫

D
c |x − y|ε−ddy ≤ c,

it follows from Theorem 4.4 that q|F| ∈ S∞(X D) and therefore F is in A2(X D). ��

For w ∈ D, we denote by E
w
x the expectation for the conditional process obtained

from X D through Doob’s h-transform with h(·) = GD(·, w) starting from x ∈ D. For
q ∈ S∞(X D) and F ∈ A2(X D), we define

eq+F(t) := exp

(

∫ t

0
q(X D

s )ds +
∑

0<s≤t

F(X D
s−, X D

s )

)

.

It gives rise to a Schrödinger semigroup

Qt f (x) := Ex
[

eq+F(t) f (X D
t )

]

. (4.9)

When x �→ Ex
[

eq+F(τD)
]

is bounded, it follows from [4, Theorem 3.9] that the Green
function for the Schrödinger semigroup {Qt, t ≥ 0} is

VD(x, y) = E
y
x

[

eq+F(τD)
]

GD(x, y), (4.10)

that is,
∫

D
VD(x, y) f (y) dy =

∫ ∞

0
Qt f (x) dt = Ex

[∫ ∞

0
eq+F(t) f (X D

t ) dt
]

(4.11)

for any Borel measurable function f ≥ 0 on D.
Let u(x, y) := E

y
x
[

eq+F(τD)
]

for y ∈ D. Applying [4, Theorems 3.10] and [6,
Theorems 3.4 and Section 6] (see also [9]) to our case, we get

Theorem 4.6 Let q ∈ S∞(X D) and F ∈ A∞(X D) be such that the gauge function x �→
Ex

[

eq+F(τD)
]

is bounded. The following properties hold.

(1) The conditional gauge function u(x, y) is continuous on (D × D) \ {(x, x) : x ∈
D}, hence by Eq. 4.10 so is VD(x, y).

(2) There exists a positive constant c = c(φ, D) such that

c−1 GD(x, y) ≤ VD(x, y) ≤ c GD(x, y), x, y ∈ D.

5 Green Function Estimate for Perturbation of Subordinated Brownian Motion

In this section, we consider Green function estimates for perturbations of subordi-
nated Brownian motions. Throughout this section, Y is a symmetric Lévy process
with a Lévy density JY(x) := J(x) + σ(x) and we assume that there exist some
constants c > 0, ρ ∈ (0, d) such that

|σ(x)| ≤ c max{|x|−d+ρ, 1} for x ∈ R
d. (5.1)
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Since |σ(x)| ≤ JY(x) + J(x), clearly Eq. 5.1 implies that σ is integrable in R
d. One

particular example of Y is obtained with JY(x) = J(x)1B(0,1)(x).
First we show that the transition density of Y is in C∞

b (Rd), where C∞
b (Rd) is the

set of smooth and bounded functions on R
d.

Lemma 5.1 The process Y has a transition density pY(t, x, y) = pY(t, y − x) such that
x → pY(t, x) is in C∞

b (Rd) for each t > 0.

Proof The Lévy exponent of Y is given by

�Y(ξ) = �(ξ) +
∫

Rd\{0}
(1 − cos(ξ, x))σ (x)dx.

Since
∣

∣

∣

∣

∫

Rd\{0}
(1 − cos(ξ, x))σ (x)dx

∣

∣

∣

∣

≤ 2|σ |L1(Rd), (5.2)

we have
∫ | exp(−t�Y(ξ))||ξ |ndξ < ∞ for every n ∈ N ∪ {0} and t > 0. Note that

for t > 0

pY(t, x) = (2π)−d
∫

Rd
e−iξ ·xe−t�Y (ξ)dξ ≤ (2π)−d

∫

Rd
e−t�Y (ξ)dξ = pY(t, 0) < ∞.

Now the assertion of the lemma follows immediately. ��

For any open set U , we will use τY
U to denote the first time Y exits U , i.e., τY

U =
inf{t > 0 : Yt /∈ U}. The killed process of Y in U is denoted by YU . It follows easily
from [28, Lemma 48.3] that for any bounded open subset U , there exists t1 > 0 such
that supx∈Rd Px(Yt1 ∈ U) < 1. Put θ := supx∈Rd Px(τ

Y
U > t1) ≤ supx∈Rd Px(Yt1 ∈ U) <

1. Then by the Markov property and an induction argument,

sup
x∈Rd

Px(τ
Y
U > nt1) ≤ θn.

Thus

sup
x∈U

Ex[τY
U ] ≤ t1

1 − θ
< ∞. (5.3)

Now we state some auxiliary properties of pX(t, x). We need these properties
only when we prove the (killed) heat kernel pY

D(t, x) is continuous and it will not
be needed in the rest of the paper.

Lemma 5.2 There exist constants c > 0 and ζ > 0 such that pX(t, x) ≤ ct−ζ for every
t ∈ (0, 1].

Proof The heat kernel pX(t, x) can be expressed in terms of Fourier transforms
by pX(t, x) = (2π)−d

∫

e−iξ ·xe−t�(ξ)dξ . Since � is slowly varying at ∞ there is a
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constant c1 such that |ξ |α�(|ξ |2) ≥ c1|ξ |α/2 for |ξ | ≥ 1. From this it follows that for
t ∈ (0, 1]

pX(t, x) ≤ pX(t, 0) = (2π)−d
∫

Rd
e−t�(ξ)dξ

≤ (2π)−d
∫

|ξ |<1
1dξ + (2π)−d

∫

|ξ |≥1
e−tc1|ξ | α

2 dξ

≤ (2π)−d πd/2

�( d
2 + 1)

+ c2t−
2d
α ≤ c3t−

2d
α .

��

Lemma 5.3 For every δ > 0 there exists a constant c = c(δ) such that for every |x| ≥ δ

and t > 0

pX(t, x) ≤ c(δ), (5.4)

|σ(x) + (

pX(t, ·) ∗ σ
)

(x)| ≤ c(δ). (5.5)

Proof The heat kernel pX(t, x) can also be written as pX(t, x) =
∫ ∞

0
(4πs)−

d
2 e− |x|2

4s P(St ∈ ds) and thus pX(t, x) < c1(δ) for all |x| ≥ δ and t > 0.

Next since σ is integrable on R
d and uniformly bounded away from 0, it follows from

Eq. 5.4 that for |x| ≥ δ and t > 0

pX(t, ·) ∗ σ(x) =
∫

pX(t, x − y)σ (y)dy

=
∫

|x−y|≥δ/2
pX(t, x − y)σ (y)dy +

∫

|x−y|<δ/2
pX(t, x − y)σ (y)dy

≤ c1(δ)‖σ‖L1(Rd) + ‖σ‖L∞(B(0,δ/2)c)

∫

|x−y|<δ/2
pX(t, x − y)dy

≤ c2(δ) < ∞.

��

In the remainder of this section ζ will stand for the constant in Lemma 5.2. Using
Lemmas 5.2 and 5.3, the proof of the next lemma is the same as that of [14, Lemma
2.6], so we omit the proof.

Lemma 5.4 For every δ there exists a constant c = c(δ, ζ ) > 0 such that pY(t, x) ≤ c
for |x| ≥ (1 ∨ [ζ ])δ and t > 0.

Now we prove that pY
D(t, ·, ·) is jointly continuous for any bounded open set D.
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Lemma 5.5 For any bounded open set D, pY
D(t, ·, ·) is jointly continuous on D × D.

Proof By Lemmas 5.2, 5.3, and 5.4, we have for every T, L > 0

sup
|x−y|≥L,0<t≤T

pY(t, x, y) < ∞. (5.6)

By the strong Markov property and the continuity of pY(t, ·, ·), the transition density
pY

D(t, x, y) of Y D for any open set D can be written as

pY
D(t, x, y) := pY(t, x, y) − Ex

[

pY(t − τY
D, YτY

D
, y) : τY

D ≤ t
]

for t > 0, x, y ∈ R
d.

(5.7)

Now using Eqs. 5.6 and 5.7 and following the routine argument (see [12]), one can
show that for any open set D, pY

D(t, ·, ·) is jointly continuous in D × D. ��

In the remainder of this section we will show that, for any bounded κ-fat open
domain D, GY

D is comparable to GD, the Green function of X D. We will accomplish
this by first dealing with the case σ is positive, then the general case.

5.1 Positive σ Case

Assume Z is a symmetric Lévy process with a Lévy density JZ (x) := J(x) + σ̃ (x) and
we assume that there exist some constants c > 0, ρ ∈ (0, d) such that

0 ≤ σ̃ (x) ≤ c max{|x|−d+ρ, 1} for x ∈ R
d. (5.8)

The Dirichlet form (E,F) of X is given by

E(u, v) = 1
2

∫

Rd

∫

Rd
(u(x) − u(y))(v(x) − v(y))J(x, y)dxdy,

F = {u ∈ L2(Rd) : E(u, u) < ∞}.

Another expression for E is given by

E(u, v) =
∫

Rd
û(ξ) ¯̂v(ξ)�(ξ)dξ,
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where û is the Fourier transform of u. The Dirichlet form (EZ ,F Z ) of Z is given by

EZ (u, v) = 1
2

∫

Rd

∫

Rd
(u(x) − u(y))(v(x) − v(y))JZ (x, y)dxdy,

F Z = {u ∈ L2(Rd) : EZ (u, u) < ∞}.
Another expression for EZ is given by

EZ (u, v) =
∫

Rd
û(ξ) ¯̂v(ξ)�Z (ξ)dξ

where �Z (ξ) = �(ξ) + ∫

Rd\{0}(1 − cos(ξ, x))̃σ (dx). It follows from Eq. 5.2 that there
exists c > 0 such that

c−1E1(u, u) ≤ EZ
1 (u, u) ≤ cE1(u, u).

Therefore we know that F Z = F and that a set is of zero capacity for X if and only
if it is of zero capacity for Z .

In the remainder of this subsection, we always assume that D is a bounded κ-
fat set. The Dirichlet forms of X D and Z D are given by (E,FD) and (EZ ,F Z

D )

respectively, where

FD = F Z
D = {u ∈ F |u = 0 on Dc except for a set of zero capacity}.

For u, v ∈ FD, we have

E(u, v) = 1
2

∫

D

∫

D
(u(x) − u(y))(v(x) − v(y))J(y − x)dxdy +

∫

D
u(x)v(x)κD(x)dx,

EZ (u, v) = 1
2

∫

D

∫

D
(u(x) − u(y))(v(x) − v(y))JZ (y − x)dxdy +

∫

D
u(x)v(x)κ Z

D (x)dx,

where κD(x) = ∫

Dc J(y − x)dy and κ Z
D (x) = ∫

Dc JZ (y − x)dy = κ X
D (x) + ∫

Dc σ̃ (y −
x)dy. Define F(x, y) := JZ (y−x)

J(y−x)
− 1 = σ̃ (y−x)

J(y−x)
and q(x) := κD(x) − κ Z

D (x). Note that
inf

x,y∈D
F(x, y) ≥ 0. Now define

Kt = exp

(

∑

0<s≤t

ln(1 + F(X D
s−, X D

s ))

−
∫ t

0

∫

D
F(X D

s , y)J(y − X D
s )dyds +

∫ t

0
q(X D

s )ds
)

and

Qt f (x) := Ex[Kt f (X D
t )], x ∈ D.

By calculating the quadratic form of Qt using techniques similar to those on [11,
p. 275], one can see that Qt is the semigroup associated with the Dirichlet form
(EZ ,F Z

D ).
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By using Theorem 2.1 and the assumption on σ̃ , it is easy to see there exist ε >

0 and c′ > 0 such that F(x, y) ≤ c′ |x−y|ε
φ(|x−y|−2)

for all x, y ∈ D. (For example, we can
take ε = ρ

2 .) Thus, by Theorem 4.5, the function F(x, y) ∈ A2(X D). Since |q(x)| =
| − ∫

Dc σ(y − x)dy| ≤ ∫

Rd σ(z)dz < ∞, we know that q ∈ S∞(X D) by Theorem 4.4.
Note that the killing intensity κ Z

D of Z D is bounded from below by a positive
constant so it follows that

inf{EZ (u, u) : u ∈ F Z
D with

∫

D
u(x)2dx = 1} > 0.

This implies that
∫ ∞

0
Qtdt is a bounded operator in L2(D, dx) and so for any Borel

subset B ⊂ D,
∫ ∞

0
Qt1B(x)dt = Ex[

∫ ∞

0
Kt1B(X D

t )dt] < ∞, for all x ∈ D. (5.9)

It follows from Eq. 5.3 and [13, Proposition 2.2 (ii)] that the Green function
GZ

D(·, ·) of Z D exists and strictly positive on D × D for any bounded open set
D. Moreover, since Z satisfies the condition (A1) in [20], it follows from [13,
Proposition 2.1], [20, Theorem 3.11] and our Lemmas 5.2 and 5.5 that the semigroup
of Z D is intrinsically ultracontractive, that is there exits a constant c1 = c1(D, t)
such that pZ

D(t, x, y) ≤ c1φ1(x)φ1(y), where φ1 is the eigenfunction of semigroup
of Z D associated with the largest eigenvalue λ1 < 0 of the generator of Z D and
‖φ1‖L2(D) = 1. Furthermore it follows from [20, Theorem 3.13] there is a constant
c2 > 0 such that pZ

D(t, x, y) ≤ c2eλ1tφ1(x)φ1(y) for all t > 1. Hence by Lemma 5.4,
the dominated convergence theorem and the continuity of pZ

D(t, ·, ·), GZ
D(·, ·) is

continuous on (D × D) \ {x = y}. Now, from Eq. 5.9, Theorems 4.4 and 4.5, we know
that the assumptions of Theorem 4.6 are satisfied. Since the Green function of the
semigroup Qt is GZ

D(x, y) = GD(x, y)E
y
x[KτD], the following result is an immediate

consequence of Theorem 4.6.

Theorem 5.6 If Z is a purely discontinuous symmetric Lévy process with Lévy density
JZ (x) = J(x) + σ̃ (x) satisfying Eq. 5.8 and D be a bounded κ-fat open set in R

d. Then
the Green function GZ

D(x, y) for Z in D is continuous on (D × D) \ {(x, x) : x ∈ D}.
Moreover, there is a constant c = c(D, d, φ) > 0 such that

c−1 GD(x, y) ≤ GZ
D(x, y) ≤ c GD(x, y), x, y ∈ D.

5.2 General Case

Now we return to the general case where σ can take both signs. From now on we
assume D is a bounded κ-fat domain (connected open set). Let Z be the Lévy process
with a Lévy density JZ (x) := JY(x) ∨ J(x). Then σ̃ (x) := JZ (x) − J(x) satisfies Eq.
5.8. By Lemma 5.5, pY

D(t, ·, ·) and pZ
D(t, ·, ·) are jointly continuous on D × D. Note

that [20, Condition (A1)(b)] is true for all three processes X, Y and Z . Since D is
a domain, by following the argument in the proof of [13, Proposition 2.2], one can
show that pX

D(t, ·, ·), pY
D(t, ·, ·) and pZ

D(t, ·, ·) are strictly positive for all t > 0. Thus
[14, Property A] is valid. (Also see [20, Corollary 3.12].) Using an argument similar
to the one in the paragraph before Theorem 5.6, we see that GY

D(·, ·) and GZ
D(·, ·) are
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strictly positive and jointly continuous on D × D. Now it follows from [14, Theorem
3.1] and the joint continuity of GY

D(x, y) that for every bounded κ-fat domain D

GY
D(x, y) ≤ c1GZ

D(x, y) ≤ c2GD(x, y), (5.10)

for some constants c1 = c1(d, D, φ) and c2 = c2(d, D, φ).
In the remainder of this subsection we will show that GY

D(x, y) ≥ c3GD(x, y) for
some c3 > 0. We will follow the argument in [14] closely.

By [14, Lemma 2.4], for any bounded open set D, Ex[τ Z
D ] � Ex[τY

D] and Ex[τ Z
D ] �

Ex[τD]. Thus

Lemma 5.7 For any bounded open set D, we have Ex[τD] � Ex[τY
D].

The following result is similar to [16, Lemma 17]. Recall that the function g is
defined in Section 3.

Lemma 5.8 Let D be a bounded κ-fat domain. Then

g(x) � Ex[τD].

Proof Pick a point z ∈ Dc such that δD(z) = diam(D) + 1 and let B := B(z, 1).
Consider the function f (x) := Px(XτD ∈ B). By the Lévy system of X, we
know that f (x) = ∫

B

∫

D GD(x, y)J(z − y)dydz. For y ∈ D, z ∈ B, diam(D) < |y −
z| < 2diam(D) + 2, so by monotonicity of j, j(2diam(D) + 2)|B| · Ex[τD] ≤ f (x) ≤
j(diam(D))|B| · Ex[τD]. Since g(x) is equal to GD(x, z0) on |x − z0| > δD(z0)

2 , the
assertion of this lemma now follows from Theorem 2.5. ��

Lemma 5.9 Let D be a bounded κ-fat domain and θ > 0 a constant. If x, y ∈ D
satisfy |x − y| ≥ θ , then there is a constant c = c(θ, φ, D, d) such that GD(x, y) ≤
c Ex[τD]Ey[τD].

Proof The proof of this lemma is similar to that of [14, Corollary 3.11]. By Theorem
3.3, we have

GD(x, y) ≤ c1
g(x)g(y)

g(A)2|x − y|dφ(|x − y|−2)
,

where A ∈ B(x, y). Since δD(A) ≥ κ
2 r(x, y) ≥ κ

2 |x − y| ≥ κθ
2 , it follows from [22,

Lemma 4.2] that

g(A) � EA[τD] ≥ EA[τB(A, κθ
2 )] ≥ c2

1
φ(( κθ

4 )−2)
.

Now the theorem follows from Lemma 5.8. ��

Recall that Y also satisfies [14, Property A] for the bounded κ-fat domain D, i.e.,

c Ex[τY
D] Ey[τY

D] ≤ GY
D(x, y). (5.11)
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The following result says that the Green functions GD(x, y) and GY
D(x, y) are

comparable when the distance between x and y is not too small.

Theorem 5.10 Let D be a bounded κ-fat domain and θ > 0 a constant. If x, y ∈ D sat-
isfy |x − y| ≥ θ , there is a constant c = c(θ, φ, D, d) such that GD(x, y) ≤ c GY

D(x, y).

Proof It follows from Eq. 5.11, Lemmas 5.9 and 5.7 that

GD(x, y) ≤ c1Ex[τD]Ey[τD] ≤ c2Ex[τY
D]Ey[τY

D] ≤ c3GY
D(x, y).

��

Now we are going to prove that GD(x, y) ≤ c GY
D(x, y) for some c = c(d, D, φ) >

0 when x and y are close to each other. The next lemma is adapted from [14, Lemma
3,5 and Corollary 3.6] which use the proofs of [26, Lemmas 7 and 9]. In fact, the
proofs of [26, Lemmas 7 and 9] work for a large class of Lévy processes including our
Y and Z . Thus, we omit the proof.

Lemma 5.11 For any bounded open set D, we have for any x, w ∈ D,

GZ
D(x, w) ≤ GY

D(x, w) +
∫

D

∫

D
GY

D(x, y)σ (y − z)GZ
D(z, w)dydz.

Theorem 5.12 For every bounded κ-fat domain D, there are constants δ =
δ(d, φ, D, σ, ρ) > 0 and c = c(d, φ, D, σ, ρ) > 0 such that for all x, w ∈ D with |x −
w| < δ, we have

GD(x, w) ≤ c GY
D(x, w).

Proof By Theorem 5.6, Lemma 5.11, and Eq. 5.10 there exist constants ci =
ci(d, φ, D, σ, ρ), i = 1, 2, such that

GD(x, w) ≤ c1GZ
D(x, w) ≤ c1GY

D(x, w) + c1

∫

D

∫

D
GY

D(x, y)σ (y − z)GZ
D(z, w)dydz

≤ c1GY
D(x, w) + c2

∫

D

∫

D
GD(x, y)σ (y − z)GD(z, w)dydz

= c1GY
D(x, w) + c2GD(x, w)

∫

D

∫

D

GD(x, y)GD(z, w)

GD(x, w)

×σ(y − z)

J(y − z)
J(y − z)dydz.

Since σ(y−z)

J(y−z)
≤ c3

|y−z|ρ
φ(|y−z|−2)

, by Theorem 4.5, there exists a c4 > 0 such that

GD(x, w) ≤ c1GY
D(x, w) + c4|x − w|α+ρφ(|x − w|−2)GD(x, w).

Now take δ small so that c4|x − w|α+ρφ(|x − w|−2)GD(x, w) ≤ 1
2 GD(x, w) if |x −

w| < δ. ��
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Combining Eq. 5.10, Theorems 5.10 and 5.12, we have proved the next theorem
which is the main result of this paper.

Theorem 5.13 Suppose that α ∈ (0, 2 ∧ d) and D is a bounded κ-fat open domain.
If Y is a symmetric Lévy process with a Lévy density JY(x) := J(x) + σ(x) with σ

satisfying the condition (5.1), then the Green function GY
D of Y D is comparable to the

Green function GX
D of X D, i.e., there exists a constant c = c(D, d, φ, ρ, σ ) such that

c−1GY
D(x, y) ≤ GD(x, y) ≤ cGY

D(x, y), x, y ∈ D.

Remark 5.14 The condition that D is connected is crucial in Theorem 5.13. For
example, if Y has a Lévy density νY(x) = ν(x)1{|x|<1} and D = B(z, 1) ∪ B(w, 1)

where z, w ∈ R
d, |z − w| > 2, then GD(x, y) > 0 for x, y ∈ D whereas GY

D(x, y) = 0
for x ∈ B(z, 1) and y ∈ B(w, 1).

Combining the above theorem with the main result in [23, Theorem 1.1], we
immediately get the following.

Corollary 5.15 Suppose that the assumptions of Theorem 5.13 are valid and further
that D is a bounded C1,1 domain, then the Green function GY

D(x, y) satisf ies

GY
D(x, y) �

(

1 ∧ φ(|x − y|−2)
√

φ(δD(x)−2)φ(δD(y)−2)

)

1
|x − y|d φ(|x − y|−2)

.
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21. Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for subordinate Brownian mo-
tions. Stochastic Process. Appl. 119, 1601–1631 (2009)
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