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Abstract

We study the spectral heat content for a class of open sets with fractal boundaries determined
by similitudes in Rd, d ≥ 1, with respect to subordinate killed Brownian motions via α/2-stable
subordinators and establish the asymptotic behavior of the spectral heat content as t → 0 for
the full range of α ∈ (0, 2). Our main theorems show that these asymptotic behaviors depend
on whether the sequence of logarithms of the coefficients of the similitudes is arithmetic when
α ∈ [d − b, 2), where b is the interior Minkowski dimension of the boundary of the open set.
The main tools for proving the theorems are the previous results on the spectral heat content
for Brownian motions and the renewal theorem.

1 Introduction

The spectral heat content on an open set D ⊂ Rd measures the total heat that remains on D at

time t > 0 when the initial temperature is one with Dirichlet boundary condition outside D. The

spectral heat content with respect to Brownian motion has been studied intensively, not only for

domains with smooth boundary (for example, see [5]) but also for certain domains with fractal

boundaries such as the s-adic von Koch snowflake (see [3, 4, 6, 7]).

Recently, there have been increasing interests in the spectral heat content for more general Lévy

processes (see [2, 8, 10, 14]). In [8] the authors studied the spectral heat content for some class

of Lévy processes on bounded open sets in R. In particular, it is proved in [8] (see Theorems 4.2

and 4.14) that when the underlying open set has infinitely many components (or infinitely many

non-adjacent components in the case of the Cauchy process) the decay rate of the spectral heat

content is strictly bigger than that of the spectral heat content with respect to open sets with

finitely many components. Hence, a natural question is to determine the exact decay rate of the

spectral heat content for Lévy processes when there are infinitely many components in D ⊂ R.

Many Lévy processes can be realized as subordinate (time-changed) Brownian motions, where

the time change is given by an independent subordinator. Since we need two operations to define
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the spectral heat content for subordinate Brownian motions, time-change and killing, there are two

objects that can be called the spectral heat content for subordinate Brownian motions: One is

related to the killed subordinate Brownian motions (do time-change first then kill the time-changed

Brownian motions when they exit the domain under consideration) and the other is related to

subordinate killed Brownian motions (kill Brownian motions when they exit the domain, then make

time-change for the killed Brownian motions). Even though the spectral heat content for killed

subordinate Brownian motions is a natural object to study as it covers a large class of the spectral

heat content for killed Lévy processes, the spectral heat content for subordinate killed Brownian

motions is also important as it oftentimes gives useful information on the spectral heat content

for the killed subordinate Brownian motions. For example, in [15] the asymptotic behavior of the

spectral heat content for subordinate killed Brownian motions with respect to stable subordinators

provides crucial information on the spectral heat content for killed stable processes.

In this paper, we study the spectral heat content for the subordinate killed Brownian motions

(see (2.10) below for the definition) when the underlying subordinator is a stable subordinator

S(α/2) = {S(α/2)
t }t≥0 whose Laplace transform is given by

E[e−λS
(α/2)
t ] = e−tλ

α/2
, λ > 0, α ∈ (0, 2), (1.1)

and the underlying open sets have fractal boundaries which are determined by similitudes in Rd.
Our main results answer the aforementioned question and they show that the exact decay rates

of the spectral heat content depend on whether the sequence of logarithms of the coefficients of

the similitudes is arithmetic when α ∈ [d − b, 2), where b ∈ (d − 1, d) is the interior Minkowski

dimension of the boundary of the underlying set (cf. (2.1) below for definition).

The main technique for studying the small time asymptotic behavior of the spectral heat content

for open sets with fractal boundaries in this paper is the renewal theorem in [13]. Two crucial

properties that we need are the additivity property of the spectral heat content under disjoint

union (Lemma 2.5) and the scaling property of the subordinate killed Brownian motions with

respect to stable subordinators (Lemma 2.7). However, in order to apply the renewal theorem, it is

necessary to have an exponential decay condition (see (2.9)) which is only valid when α ∈ (d−b, 2).

In order to establish the asymptotic behavior of the spectral heat content as t → 0 for the full

range of α ∈ (0, 2), we will use the weak convergence of Lévy measure (see Proposition 3.7) to

establish the asymptotic behavior for the case when α ∈ (0, d− b). The result is given as Theorem

3.8. It is noteworthy to observe that when α ∈ (0, d − b) the theorem is independent of whether

the sequence {ln(1/rj)} of the logarithms of the coefficients of the similitudes is arithmetic or not.

The remaining case when α = d − b ∈ (0, 1) is proved in Theorems 3.5 and 3.6 for the arithmetic

and non-arithmetic cases, respectively. We observe that there is an extra logarithm term ln(1/t)

in the decay rate of the spectral heat content when α = d − b. This is due to the fact that the

heat loss |G| − Q(2)
G (u) for Brownian motions on the open set G with fractal boundaries, where

|G| − Q(2)
G (u) =

∫
G Px(τ

(2)
G ≤ u)dx and τ

(2)
G is the first exit time of the Brownian motions out of
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G, is barely non-integrable with respect to the law of stable subordinator S
(α/2)
t . Note that this

occurrence of extra logarithm term ln(1/t) is also observed for smooth open sets in [1, 14, 15], but

it happens at a different index α. More specifically, for the spectral heat content on smooth sets

this phenomenon happens when α = 1, whereas for open sets with fractal boundaries as in our

case, this happens when α = d− b, which is strictly less than 1.

The organization of this paper is as follows. In Section 2 we set up notations, define the class of

open sets with fractal boundaries in (2.3), and recall some facts which will be used for proving our

main theorems. In particular, we recall the renewal theorem in [13] and the result for the spectral

heat content for Brownian motions in Theorem 2.4. Section 3 is the main part of this paper and

here we study the spectral heat content for subordinate killed Brownian motions. The main results

are Theorems 3.3, 3.5, 3.6, and 3.8. This section is divided into three subsections for the cases

α ∈ (d− b, 2), α = d− b, and α ∈ (0, d− b), respectively.

We use ci to denote constants whose values are unimportant and may change from one appear-

ance to another. The notations Px and Ex mean probability and expectation of the underlying

processes started at x ∈ Rd, and we use P = P0 and E = E0 to simplify notations.

2 Preliminaries

In this section, we introduce notations and recall some facts that will be used for proving the main

theorems in Section 3.

2.1 Some geometric notions

We first recall some geometric notions and the definition of the class of open sets with fractal

boundaries from [13]. See also [11, 12] for more recent developments.

For any bounded (open) set G ⊂ Rd with boundary ∂G and any ε > 0, let

Gint
ε = {x ∈ G : dist(x, ∂G) < ε}

be the interior Minkowski sausage of radius ε of the boundary ∂G. We denote by µ(ε;G) the

d-dimensional Lebesgue measure of Gint
ε . For any s > 0, define

M ∗(s, ∂G) = lim sup
ε→0

ε−(d−s)µ(ε;G)

and

M∗(s, ∂G) = lim inf
ε→0

ε−(d−s)µ(ε;G).

Following [13, Definition 1.2], the interior Minkowski dimension of ∂G (which is also called the

Minkowski dimension of ∂G relative to G) is defined by

dimint
M (∂G) = inf{s > 0 : M ∗(s, ∂G) = 0} = sup{s > 0 : M∗(s, ∂G) =∞}. (2.1)
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If, for s = dimint
M (∂G), we have 0 < M ∗(s, ∂G) = M∗(s, ∂G) <∞, then, ∂G is said to be Minkowski

measurable relative to G.

Definition 2.1 A map R : Rd → Rd is called a similitude with coefficient r > 0 if

|Rx−Ry| = r|x− y| for all x, y ∈ Rd.

It is well known (cf. e.g., [9, (1) Proposition] or [13, p.191]) that any similitude is a composition of

a homothety with coefficient r, an orthonormal transform, and a translation.

Now we define the class of open sets with fractal boundaries that we will consider in this paper.

Let G0 ⊂ Rd be a bounded open set. When d = 1, we assume that G0 is a bounded open interval

whereas when d ≥ 2, we assume that G0 is assumed to be a bounded C1,1 open set. Let Rj

(1 ≤ j ≤ N) be similitudes with coefficients rj , respectively.

For each n ≥ 1, define Υn = {j = (j1, . . . , jn), 1 ≤ ji ≤ N}. We define the set G by

G =

( ∞⋃
n=1

⋃
j∈Υn

RjG0

)
∪G0, (2.2)

where, for every j = (j1, . . . , jn) ∈ Υn, Rj is the similitude defined by Rj = Rj1 ◦ · · · ◦ Rjn . It

follows from (2.2) (see also [13, Equation (1.8)]) that G can be represented as

G =

( N⋃
j=1

RjG

)
∪G0. (2.3)

We assume that all the sets RjG, 1 ≤ j ≤ N , and G0 in (2.3) are pairwise disjoint. As in [13,

Equation (1.7)] we also assume that
∑N

j=1 r
d
j < 1 <

∑N
j=1 r

d−1
j . Since the expressions in (2.3) are

pairwise disjoint, we have

|G| =
N∑
j=1

rdj |G|+ |G0|. (2.4)

Also, the condition
∑N

j=1 r
d
j < 1 <

∑N
j=1 r

d−1
j ensures that G has a finite volume and there exists

a unique number b ∈ (d− 1, d) such that

N∑
j=1

rbj = 1. (2.5)

It follows from [13, Theorem A] that the number b is equal to the interior Minkowski dimension of

∂G. For more details, see [13] (pages 193–194).

As an illustration, we consider the following examples. Let R1 and R2 be two similitudes on R
defined by

R1(x) =
1

3
x and R2(x) =

1

3
x+

2

3
.
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We takeG0 = (1
3 ,

2
3). Then, it is easy to observe that the set defined in (2.2) is given byG = (0, 1)\C,

where C is the standard ternary Cantor set and G satisfies (2.3), and b = log 2/ log 3. Similarly, the

open set G ⊂ (0,∞)2 with the Sierṕınski gasket as its boundary can be obtained from G0 being the

open triangle with vertices (1/4,
√

3/4), (1/2, 0) and (3/4,
√

3/4) (notice that the boundary ∂G0 is

not C1,1) and three similitudes on R2 defined by

R1(x) =
1

2
x, R2(x) =

1

2
x+

(1

4
,

√
3

4

)
and R3(x) =

1

2
x+

(1

2
, 0
)
.

The (interior) Minkowski dimension of the boundary ∂G is b = log 3/ log 2.

2.2 The renewal theorem

Now we state a version of the renewal theorem from [13]. Let f : R→ R be a map. For any γ ∈ R
define

Lγf(z) = f(z − γ),

and

Lf(z) =
N∑
j=1

cjLγjf(z) =
N∑
j=1

cjf(z − γj),

where cj > 0, γj are distinct points in R with γ1 ≤ γ2 ≤ · · · ≤ γN , and
∑N

j=1 cj = 1.

Consider the following renewal equation

f = Lf + φ. (2.6)

The question is to find a function f for a given function φ. Intuitively, it is natural to expect that

the solution of the renewal equation is given by

f(z) =

∞∑
n=0

Lnφ(z) = φ(z) +

∞∑
n=1

∑
ci1 ,··· ,cin

ci1 · · · cinLγi1 · · ·Lγinφ(z). (2.7)

The following renewal theorem says it is indeed the case under certain conditions. We say a set

of finite real numbers {γ1, · · · , γN} is arithmetic if γi
γj
∈ Q for all indices. The maximal number

γ such that γi
γ ∈ Z is called the span of {γ1, · · · , γN}. If the set is not arithmetic, it is called

non-arithmetic.

Theorem 2.2 (Renewal Theorem [13]) Suppose that a map f : R → R satisfies the renewal

equation (2.6) and it satisfies

lim
z→−∞

f(z) = 0, (2.8)

and φ is a piecewise continuous function on R satisfying the condition

|φ(z)| ≤ c1e
−c2|z|, z ∈ R, (2.9)
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for some constants c1, c2 > 0. Then, the solution of the renewal equation (2.6) is given by (2.7).

Furthermore, if {γj} is non-arithmetic, then

f(z) =
1∑N

j=1 cjγj

∫ ∞
−∞

φ(x)dx+ o(1), as z →∞.

If {γj} is arithmetic with span γ, then

f(z) =
γ∑N

j=1 cjγj

∞∑
k=−∞

φ(z − kγ) + o(1), as z →∞.

2.3 The spectral heat content of subordinate killed Brownian motions

For an open set D ⊂ Rd we define the spectral heat content for Brownian motion W = {Wt}t≥0 on

Rd as

Q
(2)
D (t) =

∫
D
Px
(
τ

(2)
D > t

)
dx, τ

(2)
D = inf{t > 0 : Wt /∈ D}.

We record the following lemma from [13, Lemma 4.4]. Note that there was a typo there and r2

in (4.7) should be written as rd.

Lemma 2.3 (Lemma 4.4 [13]) Let D be an open set in Rd and R be a similitude with coefficient

r > 0. Then,

Q
(2)
RD(t) = rdQ

(2)
D (t/r2).

Proof. In [13], it is stated that this lemma can be proved by change of variables. For convenience

of readers, we provide a probabilistic proof. We first show that

τ
(2)
RD under PRx is equal in distribution to r2τ

(2)
D under Px.

Recall that any similitude R is a composition of a homothety with coefficient r, an orthonormal

transform, and a translation, so that we write R as R = SrTaO, where Sr(x) = rx, Ta(x) = x− a,

and O is an orthonormal transformation in Rd with x, a ∈ Rd. By the scaling property of Brownian

motion W = {Wt}t≥0 we have Wt
d
= SrWtr−2 . Hence, by letting u = tr−2

τ
(2)
RD = inf{t > 0|Wt /∈ RD} = inf{t > 0|R−1Wt /∈ D} under PRx

d
= inf{t|R−1SrWtr−2 /∈ D} = r2 inf{u > 0|R−1SrWu /∈ D} under PS1/rRx = POx−a.

It is elementary thatR−1 = S1/rT−O−1raO
−1 andR−1Sr = S1/rT−O−1raO

−1Sr = S1/rT−O−1raSrO
−1 =

S1/rSrT−O−1aO
−1 = T−O−1aO

−1. Observe that under the law POx−a, T−O−1aO
−1Wu /∈ D if and

only if Wu /∈ OD − a, which in turn is equivalent to Wu /∈ OD under POx. Hence, due to the

rotation invariance of W , τ
(2)
RD under PRx is equal in law to r2τ

(2)
D under Px.

Now by the change of variable x = Ry

Q
(2)
RD(t) =

∫
RD

Px(τ
(2)
RD > t)dx =

∫
D
PRy(τ

(2)
RD > t)rddy = rd

∫
D
Py(r2τ

(2)
D > t)dy = rdQ

(2)
D (t/r2).
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2

We recall the following theorem for the spectral heat content for Brownian motion from [13,

Theorem D]. Note that we found several typos in the statement of [13, Theorem D]. Readers who

are interested in the proof could consult the proof of Theorem 3.3 with α = 2.

Theorem 2.4 (Theorem D [13]) Let G be a set defined as in (2.2) with Rj being similitude with

coefficient rj, and G0 is either a bounded open interval when d = 1, or a bounded C1,1 open set

when d ≥ 2.

1. If {ln( 1
rj

)}Nj=1 is non-arithmetic, then as t→ 0,

Q
(2)
G (t) = |G| − Ct

d−b
2 + o(t

d−b
2 ), where C =

∫∞
0

(
|G0| −Q(2)

G0
(u)
)
u−(1+ d−b

2
)du∑N

j=1 r
b
j ln( 1

r2j
)

.

2. If {ln( 1
rj

)}Nj=1 is arithmetic with span ρ, then as t→ 0,

Q
(2)
G (t) = |G| − s(− ln t)t

d−b
2 + o(t

d−b
2 ),

where the function s(·) is defined by

s(z) :=
2ρ∑N

j=1(rj)b ln( 1
r2j

)

∞∑
n=−∞

(
|G0| −Q(2)

G0

(
e−(z−2nρ)

))
e
d−b
2

(z−2nρ).

Now we introduce the spectral heat content for subordinate killed Brownian motions. Let W =

{Wt}t≥0 be a Brownian motion in Rd and let S(α/2) = {S(α/2)
t }t≥0 be an (α/2)-stable subordinator

with Laplace transform given by (1.1), which is independent of W . Let D be any open set in Rd.
Then, the spectral heat content Q̃

(α)
D (t) for subordinate killed Brownian motions with respect to

stable subordinator S(α/2) on D is defined by

Q̃
(α)
D (t) =

∫
D
Px
(
τ

(2)
D > S

(α/2)
t

)
dx, (2.10)

where τ
(2)
D = inf{t > 0 : Wt /∈ D}.

We will need the following important properties of Q̃
(α)
D (t): One is the additivity under disjoint

union and another is the scaling property.

Lemma 2.5 Let D1, D2 be open sets in Rd with D1 ∩D2 = ∅. Then, for α ∈ (0, 2)

Q̃
(α)
D1∪D2

(t) = Q̃
(α)
D1

(t) + Q̃
(α)
D2

(t).

7



Proof. Note that

Q̃
(α)
D1∪D2

(t) =

∫
D1∪D2

Px
(
τ

(2)
D1∪D2

> S
(α/2)
t

)
dx

=

∫
D1

Px
(
τ

(2)
D1∪D2

> S
(α/2)
t

)
dx+

∫
D2

Px
(
τ

(2)
D1∪D2

> S
(α/2)
t

)
dx.

Note that under Px with x ∈ D1, the continuity of the sample paths of W = {Wt}t≥0 implies that

τ
(2)
D1∪D2

= inf{t > 0 : Wt /∈ D1 ∪D2} = inf{t > 0 : Wt /∈ D1} = τ
(2)
D1
.

Hence, we have ∫
D1

Px
(
τ

(2)
D1∪D2

> S
(α/2)
t

)
dx =

∫
D1

Px
(
τ

(2)
D1

> S
(α/2)
t

)
dx = Q̃

(α)
D1

(t).

It can be proved in the same way that the integral on D2 gives Q̃
(α)
D2

(t). 2

Remark 2.6 Let Q
(α)
D (t) :=

∫
D Px

(
τ

(α)
D > t

)
dx be the spectral heat content for killed stable pro-

cesses, where τ
(α)
D is the first exit time of the α-stable process WS(α/2) = {W

S
(α/2)
t
}t≥0. This is the

spectral heat content related to the killed subordinate Brownian motions by stable subordinators.

Note that for disjoint sets D1 and D2 we have

Q
(α)
D1∪D2

(t) =

∫
D1∪D2

P
(
τ

(α)
D1∪D2

> t
)
dx =

∫
D1

P
(
τ

(α)
D1∪D2

> t
)
dx+

∫
D2

P
(
τ

(α)
D1∪D2

> t
)
dx

≥
∫
D1

P
(
τ

(α)
D1

> t
)
dx+

∫
D2

P
(
τ

(α)
D2

> t
)
dx = Q

(α)
D1

(t) +Q
(α)
D2

(t).

Furthermore, the inequality can be strict as τ
(α)
D1∪D2

6= τ
(α)
D1

when the process starts at x ∈ D1 because

the process starting at x ∈ D1 can jump into D2 without visiting the complement of D1∪D2. Hence,

the spectral heat content for killed subordinate Brownian motions does not satisfy the additivity

property under disjoint union.

Lemma 2.7 Let R be a similitude with coefficient r and D is any open set in Rd. Then, we have

Q̃
(α)
RD(t) = rdQ̃

(α)
D (t/rα), t > 0.

Proof. From the proof of Lemma 2.3, τ
(2)
RD under PRx is equal in distribution to r2τ

(2)
D under Px.

By the change of variable x = Ry and the scaling property of S
(α/2)
t we have

Q̃
(α)
RD(t) =

∫
RD

Px
(
τ

(2)
RD > S

(α/2)
t

)
dx =

∫
D
PRy

(
τ

(2)
RD > S

(α/2)
t

)
rddy

=

∫
D
Py
(
r2τ

(2)
D > S

(α/2)
t

)
rddy =

∫
D
Py
(
τ

(2)
D > r−2S

(α/2)
t

)
rddy

=

∫
D
Py
(
τ

(2)
D > S

(α/2)
tr−α

)
rddy = rdQ̃

(α)
D (t/rα).

This proves the lemma. 2
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3 Asymptotic behavior of the spectral heat content

3.1 The case of α ∈ (d− b, 2).

Analogous to [13, Theorem D], we will prove that the spectral heat content Q̃
(α)
G (t) as defined in

(2.10) has the form

Q̃
(α)
G (t) = |G| − f(− ln t)t

d−b
α + o(t

d−b
α ),

when α ∈ (d− b, 2), where b is the constant in (2.5). We start with the following lemma.

Lemma 3.1 Assume that α ∈ (d − b, 2). Suppose that G0 is an open interval when d = 1 or a

bounded C1,1 open set when d ≥ 2. Define

ψ(z) =
(
|G0| − Q̃(α)

G0
(e−z)

)
e
d−b
α
z.

Then, there exists a constant c = c(α, b, d, |G0|) > 0 such that

0 ≤ ψ(z) ≤ ce−c|z| for all z ∈ R.

Proof. We define

φ(t) =
(
|G0| − Q̃(α)

G0
(t)
)
t−

d−b
α , t > 0.

Notice that for φ(t) ≥ 0 for all t > 0 and ψ(z) = φ(e−z) for each z ∈ R.

The case when z ≤ 0 is easy since we have

0 ≤ φ(t) ≤ |G0|t−
d−b
α

and this gives

ψ(z) = φ(e−z) ≤ |G0|e
d−b
α
z = |G0|e−

d−b
α
|z|

for all z ≤ 0 and α ∈ (0, 2).

Now we handle the case when z > 0, or t = e−z ∈ (0, 1). First, assume that α ∈ (1, 2). Since

G0 is an interval when d = 1 or a bounded C1,1 open set when d ≥ 2, it follows from [14, Theorem

1.1] that there exists a constant c1 > 0 such that

|G0| − Q̃(α)
G0

(t) ≤ c1t
1/α

for all 0 < t ≤ 1. Hence,

φ(t) ≤ c1t
(b+1)−d

α for 0 < t ≤ 1. (3.1)

Since b ∈ (d − 1, d) we note that (b+1)−d
α > 0. We conclude that for all z > 0, by applying (3.1)

with t = e−z,

ψ(z) = φ(e−z) ≤ c2e
−c3|z|, z ∈ R,

where c2 = max(c1, |G0|) and c3 = min(b+1−d
α , d−bα ) > 0.
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Second, when α = 1 we have from [14, Theorem 1.1]

|G0| − Q̃(α)
G0

(t) ≤ c2t ln(1/t)

for all 0 < t ≤ 1. Hence,

φ(t) ≤ c2t
1−(d−b) ln(1/t) = c2t

(b+1)−d ln(1/t) for 0 < t ≤ 1,

and this implies

ψ(z) = φ(e−z) ≤ c2ze
−z(b+1−d) for z ≥ 0.

Since b + 1− d > 0 there exists c4 and η > 0 such that

ψ(z) ≤ c4e
−ηz for all z ≥ 0.

Finally, we handle the case when α ∈ (d− b, 1). From [14, Theorem 1.1] we have

|G0| − Q̃(α)
G0

(t) ≤ c5t

for all 0 < t ≤ 1, and this implies φ(t) ≤ c5t
α−(d−b)

α for t ≤ 1, which in turn implies ψ(z) ≤
c5e
−α−(d−b)

α
z for z ≥ 0. 2

We will make use of the following simple lemma on the continuity of the map t→ Q̃D(t) which

is proved in [10, Lemma 3.11].

Lemma 3.2 For any open set D with |D| <∞, the map t→ Q̃
(α)
D (t) is continuous.

Here is the main theorem for the case of α ∈ (d− b, 2).

Theorem 3.3 Let α ∈ (d − b, 2), where b is the constant in (2.5) and G is a set given in (2.2)

with G0 being an open interval when d = 1 or a bounded C1,1 open set when d ≥ 2. If {ln 1
rj
}Nj=1 is

non-arithmetic, then we have

Q̃
(α)
G (t) = |G| − C1t

d−b
α + o(t

d−b
α ) as t→ 0, (3.2)

where

C1 =

∫∞
−∞

(
|G0| − Q̃(α)

G0
(e−z)

)
e

(d−b)z
α dz∑N

j=1 r
b
j ln(1/rαj )

=

∫∞
0

(
|G0| − Q̃(α)

G0
(t)
)
t−1− d−b

α dt∑N
j=1 r

b
j ln(1/rαj )

.

If {ln 1
rj
}Nj=1 is arithmetic with span ρ, then we have

Q̃
(α)
G (t) = |G| − f(− ln t)t

d−b
α + o(t

d−b
α ) as t→ 0, (3.3)

where

f(z) =
αρ∑N

j=1 r
b
j ln(1/rαj )

∞∑
n=−∞

(
|G0| − Q̃(α)

G0
(e−(z−αnρ))

)
e
d−b
α

(z−αnρ).

10



Proof. We denote by f(·) the function on R such that

Q̃
(α)
G (t) = |G| − f(− ln t)t

d−b
α for all t > 0. (3.4)

We will show that f satisfies the renewal equation (2.6) and the conditions in Renewal Theorem

2.2.

Since G =
⋃N
j=1RjG ∪G0 and all expressions are disjoint, it follows from Lemmas 2.5 and 2.7

that

Q̃
(α)
G (t) = Q̃

(α)⋃N
j=1RjG∪G0

(t) =

N∑
j=1

Q̃
(α)
RjG

(t) + Q̃
(α)
G0

(t) =
N∑
j=1

rdj Q̃
(α)
G (t/rαj ) + Q̃

(α)
G0

(t). (3.5)

It follows from (3.4) and (3.5) that

|G| − f(− ln t)t
d−b
α =

N∑
j=1

rdj

(
|G| − f

(
− ln

( t

rαj

))( t

rαj

) d−b
α

)
+ Q̃

(α)
G0

(t)

=
N∑
j=1

rdj |G| −
N∑
j=1

rbj · f
(
− ln t− ln

( 1

rαj

))
t
d−b
α +

(
|G0| − (|G0| − Q̃(α)

G0
(t))
)
.

By combining this with (2.4), we conclude that

f(− ln t) =

N∑
j=1

rbj · f
(
− ln t− ln

( 1

rαj

))
+ φ(t),

where

φ(t) =
(
|G0| − Q̃(α)

G0
(t)
)
t−

d−b
α .

By changing the variable z = − ln t, we have

f(z) =

N∑
j=1

rbj · f
(
z − ln

( 1

rαj

))
+ φ(e−z). (3.6)

Thus, the function f satisfies the renewal equation.

Note that from (3.4) and Lemma 3.1 (exponential decay of ψ(z)) we have

lim
z→−∞

f(z) = lim
t→∞

f(− ln t) = lim
t→∞

(
|G| − Q̃(α)

G (t)
)
t−

d−b
α = 0,

and this shows that the condition (2.8) holds. It follows from Lemma 3.1 that for any α ∈ (d−b, 2)

there exist two constants c1, c2 > 0 such that

ψ(z) = φ(e−z) ≤ c1e
−c2|z| for all z ∈ R,

and the condition (2.9) holds.

11



Therefore, by Renewal Theorem 2.2, we see that if {ln 1
rj
}Nj=1 is non-arithmetic, then as z →∞,

f(z) =
1∑N

j=1 r
b
j ln(1/rαj )

∫ ∞
−∞

(
|G0| − Q̃(α)

G0
(e−z)

)
e

(d−b)z
α dz + o(1).

This, together with (3.4), implies (3.2).

On the other hand, if {ln 1
rj
}Nj=1 is arithmetic with span ρ, then {ln 1

rαj
}Nj=1 is arithmetic with

span αρ. Therefore, (3.3) follows from the arithmetic part of Renewal Theorem 2.2 and f(z) is a

periodic function with period αρ. 2

3.2 The case of α = d− b.

In this subsection, we study the case when α = d − b ∈ (0, 1). We need a simple lemma which is

similar to [14, Lemma 3.2]. The proof is essentially the same with obvious modifications and will

be omitted.

Lemma 3.4 For any δ > 0 and α ∈ (0, 2), we have

lim
t→0

E
[(
S

(α/2)
1

)α/2
, 0 < S

(α/2)
1 < δt−2/α

]
ln(1/t)

=
1

Γ(1− α
2 )
.

Theorem 3.5 Let α = d−b ∈ (0, 1), where b is the constant in (2.5) and G is a set given as (2.2)

with G0 being an open interval when d = 1 or a bounded C1,1 open set when d ≥ 2. Assume that

{ln(1/rj)}Nj=1 is arithmetic with span ρ. Define A = supz∈R s(z) and B = infz∈R s(z), where s(z)

is from Theorem 2.4.

(1) Let g(t) :=
∫ t−2/α

0 s(− ln(t2/αv))vα/2P(S
(α/2)
1 ∈ dv). Then, we have

|G| − Q̃(α)
G (t) = tg(t) + o(t ln(1/t)). (3.7)

(2) We have

lim sup
t→0

g(t)

ln(1/t)
=

A

Γ(1− α
2 )

and lim inf
t→0

g(t)

ln(1/t)
=

B

Γ(1− α
2 )
. (3.8)

Proof. Note that by the scaling property of S
(α/2)
t we have

|G| − Q̃(α)
G (t) =

∫ ∞
0

(
|G| −Q(2)

G (u)
)
P(S

(α/2)
t ∈ du) =

∫ ∞
0

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ dv)

=

∫ t−2/α

0

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ dv) +

∫ ∞
t−2/α

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ dv)

=

∫ t−2/α

0

|G| −Q(2)
G (t2/αv)

(t2/αv)
d−b
2

(t2/αv)
d−b
2 P(S

(α/2)
1 ∈ dv) +

∫ ∞
t−2/α

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ dv).
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Hence, we have

|G| − Q̃(α)
G (t)− tg(t) = t

∫ t−2/α

0

(
|G| −Q(2)

G (t2/αv)

(t2/αv)
d−b
2

− s(− ln(t2/αv))

)
v
d−b
2 P(S

(α/2)
1 ∈ dv)

+

∫ ∞
t−2/α

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ du).

It follows from [14, Equation (2.8)] we have∫ ∞
t−2/α

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ du) ≤ c

∫ ∞
t−2/α

|G|u−1−α
2 du = o(t ln(1/t)). (3.9)

In this case, by applying Theorem 2.4 we have

|G| −Q(2)
G (t2/αv)

(t2/αv)
d−b
2

= s(− ln(t2/αv)) + o(1) as t→ 0. (3.10)

From (3.10) for any ε > 0 there exists t0(ε) such that∣∣∣∣∣ |G| −Q
(2)
G (t2/αv)

(t2/αv)
d−b
2

− s(− ln(t2/αv))

∣∣∣∣∣ < ε

for all t ≤ t0. Hence it follows from Lemma 3.4 that

lim sup
t→0

t
∫ t−2/α

0

(
|G|−Q(2)

G (t2/αv)

(t2/αv)
d−b
2

− s(− ln(t2/αv))
)
v
d−b
2 P(S

(α/2)
1 ∈ dv)

t ln(1/t)

≤ ε lim sup
t→0

∫ t−2/α

0 vα/2P(S
(α/2)
1 ∈ dv)

ln(1/t)
≤ ε

Γ(1− α
2 )
.

This establishes (3.7).

For (3.8), notice that

|G| − Q̃(α)
G (t) =

∫ t−2/α

0

|G| −Q(2)
G (t2/αv)

(t2/αv)
d−b
2

(t2/αv)
d−b
2 P(S

(α/2)
1 ∈ dv)

+

∫ ∞
t−2/α

(
|G| −Q(2)

G (t2/αv)
)
P(S

(α/2)
1 ∈ du).

As in (3.9) the second expression above is o(t ln(1/t)) as t→ 0. For any ε > 0 it follows from (3.10)

we have
|G|−Q(2)

G (t2/αv)

(t2/αv)
d−b
2

< A+ε for all sufficiently small t. This fact, together with (3.7) and Lemma

3.4 gives

lim sup
t→0

g(t)

ln(1/t)
= lim sup

t→0

|G| − Q̃(α)
G (t)

t ln(1/t)
≤ A+ ε

Γ(1− d−b
2 )

.

Since ε > 0 is arbitrary, we conclude that

lim sup
t→0

g(t)

ln(1/t)
= lim sup

t→0

|G| − Q̃(α)
G (t)

t ln(1/t)
≤ A

Γ(1− d−b
2 )

. (3.11)
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For the lower bound, it follows from Theorem 2.4 that for any ε > 0 there exists a sequence tn → 0

such that
|G| −Q(2)

G (t
2/α
n v)

(t
2/α
n v)

d−b
2

≥ A− ε.

Hence, from Lemma 3.4, (3.9), and (3.11) we have

lim sup
n→∞

g(tn)

ln(1/tn)
= lim sup

n→∞

|G| − Q̃(α)
G (tn)

tn ln(1/tn)

≥ (A− ε) lim sup
n→∞

∫ t
−2/α
n

0
v
α
2 P(S

(α/2)
1 ∈ dv) ≥ A− ε

Γ(1− d−b
2 )

.

Since ε > 0 is arbitrary, we have

lim sup
t→0

g(t)

ln(1/t)
≥ A

Γ(1− d−b
2 )

. (3.12)

Hence, the lim sup version of (3.8) follows from (3.11) and (3.12), and the lim inf version can be

proved in the same way. 2

Here is the result for the non-arithmetic case. The proof is very similar to the proof of Theorem

3.5, hence it will be omitted.

Theorem 3.6 Let α = d−b ∈ (0, 1), where b is the constant in (2.5) and G is a set given as (2.2)

with G0 being an open interval when d = 1 or a bounded C1,1 open set when d ≥ 2. Assume that

{ln(1/rj}Nj=1 is non-arithmetic. Then, we have

lim
t→0

|G| − Q̃(d−b)
G (t)

t ln(1/t)
=

1

2Γ(1− d−b
2 )
∑N

j=1 r
b
j ln(1/rj)

∫ ∞
0

(
|G0| −Q(2)

G0
(u)
)
u−1− d−b

2 du.

3.3 The case of α ∈ (0, d− b).

Now we handle the case when α ∈ (0, d−b). The following proposition is proved in [10, Proposition

3.12].

Proposition 3.7 Let f be a bounded continuous function on (0,∞) such that lim
x↓0

f(x)

xγ
exists as a

finite number for some constant γ > α
2 . Then, we have

lim
t↓0

∫ ∞
0

f(u)
P(S

(α/2)
t ∈ du)

t
=

α

2Γ(1− α
2 )

∫ ∞
0

f(u)u−1−α
2 du.

Theorem 3.8 Let α ∈ (0, d − b), where b is the constant in (2.5) and G is a set given as (2.2)

with G0 being an open interval when d = 1 or a bounded C1,1 open set when d ≥ 2. Then, we have

lim
t→0

|G| − Q̃(α)
G (t)

t
=

α

2Γ(1− α
2 )

∫ ∞
0

(
|G| −Q(2)

G (u)
)
u−1−α

2 du.

14



Proof. Notice that we have

|G| − Q̃(α)
G (t) =

∫ ∞
0

(
|G| −Q(2)

G (u)
)
P(S

(α/2)
t ∈ du).

It follows from Theorem 2.4 that there exists constants c1 such that

|G| −Q(2)
G (u) ≤ c1u

d−b
2 for u ≤ 1.

Since α ∈ (0, d− b), we can take γ ∈ (α2 ,
d−b

2 ) and this implies

lim
u→0

|G| −Q(2)
G (u)

uγ
= 0.

Now the conclusion of the theorem follows immediately from Proposition 3.7. 2
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