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Abstract
We investigate the 3rd term of the spectral heat content for killed subordinate and subordi-
nate killed Brownian motions on a bounded open interval in a real line when
the underlying subordinators are stable subordinators with index 1 2 or 1. We
prove that in the 3rd term of the spectral heat content, one can observe the length of
the interval .
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1 Introduction

The classical spectral heat content 2 measures the total heat that remains on a domain
with Dirichlet boundary condition and unit initial heat. The spectral heat content can be

written in probabilistic terms, and it can be defined as

2 2

where 2 inf 0 is the first exit time from by a Brownian motion
0. When the Brownian motion is replaced by other Lévy processes, the corresponding

quantity is called the spectral heat content for the Lévy processes. It was recently studied
intensively in [1, 2, 9].

One of the most commonly used jump type Lévy processes is the symmetric stable pro-
cesses of index 0 2 . When 2, it is a Brownian motion whose sample paths are
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continuous with the characteristic exponent being
2
. When 0 2 , they

are pure-jump processes. Stable processes are in fact a special case of subordinate Brownian
motions which are time-changed Brownian motions whose time change is given by stable
subordinators 2 with Laplace exponent given by

2 2
0.

When one studies the spectral heat content of subordinate Brownian motions, one needs
to consider a time-change by a subordinator and killing the process when it first exits the
domain under consideration. When we first do time-change and kill the processes, it is
called killed subordinate Brownian motions and when we first kill the Brownian motions
when they first exit the domain and do time-change into the killed Brownian motions, it
is called subordinate killed Brownian motions. These two processes are closely related,
and sometimes understanding the spectral heat content of one process helps understand
the other. The spectral heat content for killed subordinate Brownian motions, when the
subordinators are stable subordinators (killed stable processes), were studied in [1, 2], and
the spectral heat content for subordinate killed Brownian motions were studied in [11]. In
those papers, the authors found the asymptotic expansion of the spectral heat content up to
the 2nd terms.

The purpose of this paper is to refine these results and find the 3rd terms of the spectral
heat contents and for subordinate killed Brownian motions and killed sub-
ordinate Brownian motions, respectively, in a bounded open interval , when
the subordinators are stable subordinators for 1 2 . The main results of this paper are
the followings. The explanation of notations of theorems will be postponed to Section 2 to
introduce main results as quickly as possible. All asymptotic notations are as 0.

Theorem 1.1 Let with , , and 2.

(1) Let 1 2 . Then,

1
1

2 1
2

1 1 2 1 2
1

. (1.1)

(2) Let 1. Then,
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1
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1
1
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1

1
1

1
. (1.2)

Theorem 1.2 Let with , , and 2.

(1) Let 1 2 . Then,

2
1

1 2 0 1
1

1 1 2
1

. (1.3)

(2) Let 1. Then,

1 2
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2
. (1.4)
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Remark 1.3 When 0 1 , the asymptotic expansion for the spectral heat contents
or are only known up to the second terms (see [2, Theorem 1.1] and

[11, Theorem 1.1]). Asking the third terms when 0 1 is definitely a very interesting
question, and we intend to deal with this question in a future project.

Studying higher order terms is not only an interesting question in itself, but we could
also observe that there are some different patterns in the asymptotic expansion of the spec-
tral heat content for Brownian motions and other Lévy processes by studying higher order
terms. For Brownian motions, it is well-known that for smooth domains , the spectral heat
content has the asymptotic expansion of the form 2

1 2 , where
has some geometric information about the domain such as perimeter or mean curvature.
Hence, it is natural to conjecture that at least when 1 2 , the spectral heat content
for stable processes is of the form 1 . Theorems 1.1 and 1.2 say
this is not the case and the asymptotic expansion involves terms that cannot be written as

. Also, we observe that the 3rd term involves the length of the underlying interval
, hence one can determine the domain uniquely up to locations, when is a

bounded open interval in from the spectral heat content.
In this paper, we focus on the spectral heat content in dimension one. The geometry

of open intervals in is simple enough to allow to perform detailed computations, and
this could be helpful to extend results of this paper into more general settings, such as the
spectral heat content in higher dimensions or with respect to more general processes. These
problems will be studied in forthcoming projects.

In order to prove the first part of Theorem 1.1 ( 1 2 ), we analyze the difference

1
1 directly and prove that it is of order . Hence, the proof

is quite straightforward in this case. For the second part of Theorem 1.1 ( 1), the com-
putation becomes delicate because of the logarithmic term ln 1 . We utilize the exact

form of the density of the supremum process
1

sup 1 in [8] to compute the

difference
1

1
1 for large , prove that main terms of order ln 1 cancel

out each other, and finally show that the remaining terms are of order . In order to prove
Theorem 1.2, we follow a similar path as Theorem 1.1. For the first part of Theorem 1.2
( 1 2 ), we reprove [11, Theorem 1.1] when and 1 2 using a proba-
bilistic argument in Theorem 4.3, which is similar to [2]. We would like to mention that in
Theorem 4.3, we express the 2nd coefficient of by means of the probabilistic

term 2
1

, which is more natural than other previously known expressions (com-

pare it with [11, Theorem 1.1]). In order to prove the second part of Theorem 1.2 ( 1),

we establish the tail probability 2 for 1 in Proposition 4.7, which is

an amusingly simple expression. Once having established Proposition 4.7, it is straightfor-

ward to compute the difference 2
1

2 for large . Then, we prove that main

terms of order ln 1 cancel out each other again, and show that the remaining terms are
of order .

The organization of this paper is as follows. In Section 2, we introduce notations and
recall some preliminary facts. In Section 3, we study the spectral heat content for killed
subordinate Brownian motions and prove Theorem 1.1. The first part of Theorem 1.1 is
proved in the Section 3.1, and the second part of Theorem 1.1 is proved in the Section 3.2.
In Section 4, we study the spectral heat content for subordinate killed Brownian motions,
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and prove first and second parts of Theorem 1.2 in Sections 4.1 and 4.2, respectively. The
notation stands for the law of the underlying processes started at , and stands
for expectation with respect to . For simplicity, we use 0 and 0.

2 Preliminaries

In this section, we introduce some notations and define the functions to be studied in the
later sections. All stochastic processes and domains are one dimensional objects.

Let 0 be a Brownian motion in . The density of the gaussian random

variable is 1
4

2
4 with the characteristic function given by

2
.

The supremum process 0 of the Brownian motion is defined by

sup . It follows from [10, Theorem 2.21] that and have the same distribution.

Let 2 2

0
be an 2-stable subordinator. That is, 2 is an increasing

Lévy process started at zero whose Laplace exponent is

2 2
0. (2.1)

It follows from Eq. 2.1 that 2 and 2 2
1 have the same distribution for any

0. The subordinator 2 is an increasing process started at 0, and for this reason it
plays a role as time. By doing an elementary integral, it is easy to check that

2 2

1 2 0
1 1 2 0 0 2 .

This shows that the Lévy density for 2 is

2

1 2

1 2 0. (2.2)

It follows from [11, Equation (2.3)] or [7, Equation (18)] that the density 2
1 of 2

1
exists, and is given by

2
1

1

1

1 1 1 2 sin
2

2 1 0. (2.3)

It follows from the scaling property (2.1) that we have

2 2 2
1 2

. (2.4)

Now we define subordinate Brownian motions. Let and 2 be Brownian motions
and stable subordinators defined on some probability space. Assume that they are indepen-
dent. Then, the subordinate Brownian motions by the subordinator 2 are the following
time-changed Brownian motions:

2 .
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By conditioning on 2 , one can observe that the characteristic function of time

changed process
0

2
0

is given by

2 2 2
(2.5)

and this shows that are symmetric stable processes of index . From Eq. 2.5, we
observe that has the scaling property; and 1

1 have the same distribution for
any 0. The Lévy density of is given by (see [6, Equation (1.3) and (1.22)])

1
1 1

2 1 1
2

1 2 1 2

. (2.6)

Let be an open set in , and define inf 0 be the first exit time

from by . The killed processes
0

are defined by

if

if

where is a cemetery state. The process will be called killed subordinate Brownian
motions by stable subordinators 2 , since we first subordinate (time-change) Brown-
ian motions, then kill the process when they exit the domain. We can exchange the order
of time-change and killing, and the corresponding process will be called subordinate killed
Brownian motions (by stable subordinators 2 . More precisely, let 2 inf 0

be the first exit time from by Brownian motions . Define killed Brownian
motions 0 as

if 2

if 2 .

Now the subordinate killed Brownian motions 2 2
0

are

defined by

2

2 if 2 2

if 2 2 .

The following graph illustrates sample paths of and 2 starting from
when , where the straight lines represent the sample paths of Brownian motions,
the circles represent the sample paths of 2 , while the circles together with the
rectangles represent the sample paths of .



H. Park

Let inf 0 2 be the life time of 2 . Then, we have

2 2 .

Clearly, we have , and the inclusion can be strict.

We define the supremum processes
0

of the stable processes as

sup sup 2 . (2.7)

Similarly, 2 2
0

are defined by

2 sup
2

. (2.8)

It is noteworthy to mention that even though two expressions and 2 mean the

same objects, stable processes of index , the supremum notations and 2 are

different, and we always have 2 . The infimum processes , , and 2

are defined in similar ways with the supremum being replaced by the infimum.
Finally, we define the spectral heat content and for killed subordinate

Brownian motions and subordinate killed Brownian motions. The spectral heat content
for killed subordinate Brownian motions is defined by

and the spectral heat content for subordinate killed Brownian motions is defined by

2 2 .
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Since , we always have

.

When starts at , we have

or .

It follows from the scaling property and the symmetry of , an elementary probability
law for any events and B, and the change of
variable 1 and 1 , we have

or

and

1
1

1
1

and

1 1

0
1

1
0

1

1

and

2 1 1

0
1 and . (2.9)

3 Spectral Heat Content for Killed Subordinate BrownianMotions

3.1 Case: (1, 2)

We start with a simple lemma. Let be the transition density (heat kernel) for .
Note that the following heat kernel estimate is well-known (see [5]);

1 (3.1)

for some constant 1.

Lemma 3.1 Suppose that 1 2. Then

lim
0

1
1 1 2 1 1

2

1 1 2 1 2
1

.
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Proof It follows from L’Hôpital’s rule, the scaling property of , [3, Proposition VIII 4],
[12, Corollary 8.9], and (2.6) that we have

lim
0

1 1

1 1
lim

0 1

1
1

lim
0 1

1
1

lim
0 1

lim
0 1 1

1
1

2 1 1
2

1 1 2 1 2
1

.

Lemma 3.2 Let 1 2 . Then, for any 0, we have

and
1 1

1

for some constant 0.

Proof Define

inf or .

Clearly, is a stopping time with respect to the natural filtration 0. When the
process starts at , we have

and and

and and

sup inf

sup
0

inf
0

where . By the strong Markov property, has the same distribution as
started from 0, and is independent of . Hence, for any , we have

and

2 (3.2)
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where we used the fact that and have the same distribution because of the
symmetry of .

From the scaling property of , (3.1), and [2, Proposition 2.1], we have

1 1
2 1 1 1

1

1
1

2 . (3.3)

When starts at , we have

or .

Hence, from Eqs. 3.2 and (3.3), we have

and 3 or

3 .

By the scaling property of and the change of variable 1 , we have

1
1 1

1

0 1
1

1 .

Similarly, by the change of variable 1 , and the fact that and have
the same distribution, we have

1
1

1
1

0
1

1
1 .

Now the conclusion follows immediately.

Now we are ready to prove the first part of Theorem 1.1.

Proof of (1.1)
From Eq. 2.9, we have

1
1

1
1

2 1 1

0
1 and

2 1

0
1

2 1

1

1 and . (3.4)

Now the conclusion follows immediately from Lemmas 3.1 and 3.2.

3.2 Case: 1

In this subsection, we study the asymptotic behavior of the spectral heat content for killed
subordinate Brownian motions (killed stable processes) when 1. We start with a lemma
that is similar to Lemma 3.2.



H. Park

Lemma 3.3

1
and 1 2 ln 1 as 0.

Proof The proof is similar to the proof of Lemma 3.2, and we only explain the difference.
As in the proof of Lemma 3.2, we have

sup 1 1 1

2 1

0

1
1

2 ln 1

where the last part comes from [2, Proposition 4.3.(i)].
There was an error in the paragraph right above [2, Remark 5.1]. The density for

1
1

exists and it is given by (see [8])

1
1 2 1 2 3 4

exp
1 1

0

ln

1 2
0. (3.5)

We note that there is also a minor error in the exact expression of in [8] and the
upper bound of the integral should be 1 , instead of .

Now we are ready to prove the second part of Theorem 1.1.
Proof of (1.2)

From Eq. 2.9, we have

1 1 2
0

1
1

1
and 1 .

It follows from Lemma 3.3.

lim
0

1
and 1

0.

Note that from [2, Proposition 4.3.(i)], we have

lim
0

2 0
1

1

ln 1

2
.

We will show that

lim
0

0
1

1
ln 1

lim
0 0

1
1

ln 1

1

0

1
1

ln

1

1
1

1
.
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Note for any 0 that

0

1
1

ln 1

1

0

1
1

1

1
1

1

1 ln

1

0

1
1

ln

1

1
1

1
.

It follows from Eq. 3.5 and the change of variable 1 , we have

1
1

1
1 2 1 2 3 4

exp
1 ln

1 2
.

We will show that for all sufficiently large , we have

1
1

1 4
2

ln
2

(3.6)

so that by the Lebesgue dominated convergence theorem,

lim
0 1

1
1

1

1

1
1

1
.

For 1 and , we have exp 1 ln
1 2

0 1 and

1
1 2 1 2 3 4

exp
1 ln

1 2

1
1 2 1 2 3 4

1

1 2

1

2
arctan

1
arctan 1

0

1

2 1

1
2 1

where we used an elementary identity arctan arctan 1 2 . Hence, there exists
1 0 such that

1
1

1 1

2

1
3

for all 1. (3.7)

Now we focus on establishing the upper bound. From Karamata’s Theorem ([4, Theorem
1.5.11 (ii)]), we have

ln

1 2
2

2 ln

1 2

ln

1 2
as .

Hence, there exists 2 0 such that for all 2, we have

ln

1 2

2 ln

1 2
. (3.8)

By an elementary calculus, we see that 1 2 for all 0 ln 2, and take 3 so
that

2 ln

1 2
ln 2 for all 3. (3.9)
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It follows from Eqs. 3.8 and 3.9 for max 2 3 , we have

1
1

1

1
1 2 1 2 3 4

exp
2 ln

1 2

1

1
1 2 1 2 3 4

1
4 ln

1 2

1

1
2

1
1 2 1 2 3 4

4 ln

1 2

1

4
2

1 2 ln

1 2 7 4

4
2

ln
3

.

Again, it follows from [4, Theorem 1.5.11 (ii)], we have

ln
3

1

2

ln
2

as

and we can take a constant 4 max 2 3 such that ln
3

ln
2 for all 4.

Hence, for 4

1
1

1 4
2

ln
2

. (3.10)

Hence, it follows from Eqs. 3.7 and 3.10, there exists 5 max 1 4 such that (3.6)
holds for all 5.

4 Spectral Heat Content for Subordinate Killed BrownianMotions

In this section, we study the 3rd term of the spectral heat content for subordinate killed
Brownian motions, and prove Theorem 1.2.

4.1 Case: (1, 2)

Lemma 4.1 For any 0 2 , there exists a constant 0 such that

2 for all 0.

Proof By the scaling property and [10, Theorem 2.21], we have

sup
2

2
2 1 2

1

1 2
1

1 2

1

2
1

2

2
1

2
.
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Hence, we have

sup
2

2
0

2
1

2

2 2

1

4

2
4

2
0

2

2 2

2
2

1

2

2 2

1

4

2
4

2

2 2

2

0

2

2 2

2
2

1

2

2 2

2
4 .

It follows from [11, Equation (2.8)], there exists a constant 1 such that for all
0 ,

2 2
1 1.

Hence, we have

sup 1

0

2
4 .

Lemma 4.2 Let 1 2 . Then, there exists a constant 0 such that

sup
2

and inf
2

2
1

1 1
.

Proof The proof is similar to the proof of Lemma 3.2, and we provide the details for the
reader’s convenience. Define

inf sup
2

or inf
2

.

Clearly, is a stopping time with respect to the natural filtration . As in the proof of
Lemma 3.2, we have

sup
2

and inf
2

sup
2

inf
2
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where . By the strong Markov property, have the same distribution
as started from 0, and is independent of . Hence, using a similar argument that leads
to (3.2), the symmetry of , and Lemma 4.1, we have

sup
2

and inf
2

2 sup 1 . (4.1)

When starts at , we have

sup
2

or inf
2

.

Hence, from Eq. 4.1, we have

sup
2

and inf
2

1 sup
2

or inf
2

1 sup
2

inf
2

. (4.2)

Note that it follows from the scaling property of 2 and , independence of 2

and , and the change of variable 1 , we have

sup
2

sup
2 2

1

1
2

1
1

0
sup

2
1

1
1

0 0
sup 2

1

1

0 0
sup 2

1
1

0

2
1

1

0

1 2
1

2
1

1
1

2
1

1 2

1
2

1
(4.3)
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where the last term is known to be finite, since 1 (see [1, Proposition 2.1]). By the
symmetry of , we similarly have

inf
2

inf
2 2

1

1
2

1
0

1
inf

2
1

1
1

0
sup

2
1

1
2

1
. (4.4)

Now the conclusion follows immediately from Eqs. 4.2, 4.3, and 4.4.

Now, we reprove the following theorem using the probabilistic argument similar to [2].

Theorem 4.3 Let 1 2 and an open interval with . Then, we
have

lim
0 1

2 1 1

2
1

.

Proof The proof is similar to [2, Theorem 1.1]. When starts at , we have

2 2 or for some 2 .

Hence, using a similar argument as (2.9), we have

2 2
2 or 2

2 2 2 and 2 dx. (4.5)

From Lemma 4.2, the last expression above is 1 . From Eqs. 4.3 and 4.4, and the
monotone convergence theorem, we have

lim
0

2

1
lim

0

2

1 2
1

.

Finally, from [1, Proposition 2.1], we have 2
1

1 2 1 1

and from [10,

Theorem 2.21] and a direct computation, we have

1 [ 1 ] 2
0 4

2
4

2
.

From the independence of and 2 , this shows that

2
1

1
2

1

1 2 2 1 1

.

Next, we need the following technical computations.
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Lemma 4.4 We have

1
2 2

4 as .

Proof It follows from [10, Theorem 2.21] that we have

1 1 2
1

4

2
4 .

Now it follows from the L’Hôpital’s rule, we have

lim
2 1

4

2
4

2
2
4

lim

2
4

2
2

2
4

2
4

1.

Lemma 4.5 Let 1 2 . Then, we have

lim
0

1

2

0 1
2

1

1 1

1 1 1 1 1
1

1 .

Proof By L’Hôpital’s rule, the change of variable
1

, Eqs. 2.2 and 2.4, [12,

Corollary 8.9], and the Lebesgue dominated convergence theorem using Lemma 4.4, we have

lim
0

1

2

0 1
2

1

1 1

lim
0 1

2 2

0
1

1
2

1

lim
0

2 3

1 1
1

2
1

2 2

2
2 3

lim
0

2 3

1 1
1

2 2

2 3

1 1 2
1

1
1

1 .

Recall that it follows from [11, Equation (2.5)],

lim 2
1

1 2

2 1 2

. (4.6)

Lemma 4.6 Let 1 2 . Then, we have

lim
0

1 2 1 1 2
2

1

1 1

1 1 2
1

1

0
1

1 .
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Proof By the change of variable 1 2 , the inner integral in the numerator can be written
as

2
1 1 2

2
1

2
1 1 2

2
1

1

0
1

2
1

2

2

2 2

3
.

Since 2
1

1 2 for 1, the integral is finite.
By the L’Hôpital’s rule, the Lebesgue dominated convergence theorem, and (4.6), we

have

lim
0

1
1

0 1
2

1

2

2
2 2

3

1 1

lim
0

2

1

1

0
1

2
1

1 2 1 2

3

lim
0

2

1 1

1

0
1

2
1

1 2

1 2 1 2
1

2

1 1

1

0
1

2 1 2

1 .

Now we are ready to prove the first part of Theorem 1.2.

Proof of (1.3)
Note that from Eqs. 4.3, 4.4, and 4.5, we have

2 1

0

1

0
sup 2

1

2 and 2 . (4.7)

It follows from Lemma 4.2

2 and 2
1 1

.

Now we focus on the first integral in Eq. 4.7. Note that from the scaling property of ,
we have

2 1

0

1

0
sup 2

1 2 1

0
sup

2
1
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2 1

0

1

0
sup 2

1 2 1

0 0
sup

2
1

2 1

0 1

2
1 2 1

0 1

1

2
1

2 1

1

2

0
1

2
1

1
2

1

2
1 .

Now the conclusion follows immediately from Lemmas 4.5 and 4.6.

4.2 Case: 1

In this subsection, we study the spectral heat content for subordinate killed Brownian
motions when the underlying subordinator is 1 2 .

Proposition 4.7 For any 1, we have

1 2
1

2
arctan 1 . (4.8)

Proof It follows from Eq. 2.3 that the density of 1 2
1 is given by

1 2
1

1

1

1 1
1
2

2 1

1
2 0.

It is easy to check 2 2 1 for all 1 and 1
2 1 for all

2. Hence, we have

1

1 1
1
2

2 1

1
2

1

1
2

2 1

1
2

3

2

3
2

2

1

2 1

1
2

3

2

3
2

2

1
2 3

2

3
2

1
2 1 1

1

1
3 2

as .
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Hence, by the Lebesgue dominated convergence theorem, we have

1 2
1

2

2 2
2

1 2
1

2
2

1

1

1 1
1
2

2 1

1
2

1

1

1 1
1
2

2 1

1
1
2

2 1

2 1
.

It follows from [10, Theorem 2.21] that

1 1 2
1

4

2
4

1 2
4 .

Hence, we have

1 2
1 0

2
1

0
1

2
1

0

1 2
4

2
1

1

0
2
2

2
1

2
4

1

0

1

1

1 1
1
2

2 1

1
1
2

2 1

2 1

2
4

2
3 2

1

1 1
1
2

2 1

1

2 1

1
2 1

0

2 1
2
4

2
3 2

1

1 1
1
2

2 1

1

2 1

1
2 1

22 1 (4.9)

where we used 0
2 1

2
4 22 1, and the interchange of the infinite sum and

integral is valid, because of the exponential decay term and the fact 1. By the Legendre

duplication formula, we have 1
2 21 2 2 . By the Taylor expansion

of arctan 1 1 1 2 1

2 1 for 1, Eq. 4.9 can be simplified to

2

1

1 1 1

2 1

1
2 1

2
arctan

1
for 1.

Remark 4.8 Even though it is not necessary for our result, it would be interesting to see if
(4.8) holds for all 0.

Lemma 4.9 We have

1 2 and 1 2
2 ln 1 .

Proof The proof is almost identical to the proof of Lemmas 3.3 using 4.1. It fol-

lows from Proposition 4.7, 1 2
1

2 as , and this shows that

0 1 2
1

ln 1 .
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Now we are ready to prove the second part of Theorem 1.2.

Proof of (1.4)
Note that from Eq. 4.5, we have

1 2 1 2

2 1 2 1 2 and 1 2 .

It follows from Lemma 4.9, the second term is 2 ln 1 .
Now the first expression above can be written as

2 1 2 2 sup
2 1 2

1

2

2 sup
1 2

1

2
0

sup
1 2

1

2
0

1 2
1

.

Hence, we have

2
0

1 2
1

4
ln 1

2
0

1 2
1

2
ln 1

2
1

0
1 2

1

2 ln

1
1 2

1

2
.

From Proposition 4.7, we have 1 2
1

2 1
3 , and this shows that it

is integrable on 1 . Hence, it follows from the monotone convergence theorem

lim
0

2 1

0
1 2

1

2 ln

1
1 2

1

2

2
1

0
1 2

1

2 ln

1
1 2

1

2
.
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