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Small time asymptotics of spectral heat contents for subordinate
killed Brownian motions related to isotropic α-stable processes

Hyunchul Park and Renming Song

Abstract

In this paper, we study the small time asymptotic behavior of the spectral heat content ˜Q
(α)
D (t)

of an arbitrary bounded C1,1 domain D with respect to the subordinate killed Brownian motion
in D via an (α/2)-stable subordinator. For all α ∈ (0, 2), we establish a two-term small time

expansion for ˜Q
(α)
D (t) in all dimensions. When α ∈ (1, 2) and d � 2, we establish a three-term

small time expansion for ˜Q
(α)
D (t).

1. Introduction

Let X be a Markov process in R
d. For any open set D ⊂ R

d, the heat content of D with respect
to X is defined to be

HX
D (t) :=

∫
D

Px(Xt ∈ D)dx,

and the spectral heat content of D with respect to X is defined to be

QX
D(t) :=

∫
D

Px(τXD > t)dx,

where τXD is the first time the process X exits D. The spectral heat content of D with respect
to X can be regarded as the heat content of D with respect to the killed process XD. When X

is an isotropic α-stable process, α ∈ (0, 2], in R
d, we will write Q

(α)
D (t) for QX

D(t). In particular,
Q

(2)
D (t) stands for the spectral heat content of D with respect to Brownian motion.
The heat content with respect to Lévy processes, especially Brownian motions, has been

studied extensively, see, for instance, [1, 4, 5, 12, 20, 22]. The spectral heat content Q
(2)
D (t)

with respect to Brownian motion has also been studied a lot (see [2–21]). In [2], a two-term
small time expansion for Q

(2)
D (t) was established for bounded C1,1 domains and in [6] a three-

term small time expansion for Q
(2)
D (t) was obtained for bounded domains with C3 boundary.

In [17], a recursive formula of the complete asymptotic series of the spectral heat content in
a Riemannian manifold with smooth boundary was investigated. The study of the small time
asymptotic behavior of the spectral heat content with respect to other Lévy processes is more
recent. Upper and lower bounds for Q

(α)
D (t), α ∈ (0, 2), were established in [22], while explicit

expressions for the second term in the asymptotic behavior of Q(α)
D (t), α ∈ (0, 2), in dimension

1 for bounded open intervals were obtained in [21]. In the recent paper [13], the results of
[21, 22] were generalized in several directions.

An isotropic α-stable process X(α) can be obtained from a Brownian motion W via an
independent (α/2)-stable subordinator S(α/2), that is, X

(α)
t = W

S
(α/2)
t

. Thus, an isotropic
α-stable process is a subordinate Brownian motion. Hence, the spectral heat content Q

(α)
D (t)
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is the heat content with respect to the killed subordinate Brownian motion X(α),D, which can
be obtained from the Brownian motion W by subordinating with the independent (α/2)-stable
subordinator S(α/2) first and then killing it upon exiting D. If we reverse the order of the two
operations, that is, we first kill the Brownian motion W upon exiting D and then subordinate
the killed Brownian motion WD using the independent (α/2)-stable subordinator S(α/2), we
get the process Y

D,(α)
t := WD

S
(α/2)
t

, which is called a subordinate killed Brownian motion. The

generator of X(α),D is −(−Δ)α/2|D, the fractional Laplacian with zero exterior condition,
while the generator of Y D,(α) is −(−Δ|D)α/2, the fractional power of the Dirichlet Laplacian.
Subordinate killed Brownian motions are very natural and useful processes. For example, it
was used in [11] as a tool to obtain two-sided estimates for the eigenvalues of the generator
of X(α),D. The potential theory of subordinate killed Brownian motions has been studied
intensively, see [15] and the references therein. In the PDE literature, the operator −(−Δ|D)α/2

also goes under the name of spectral fractional Laplacian, see [9] and the references therein.
This operator has been of interest to quite a few people in the PDE circle.

The purpose of this paper is to study the small time asymptotic behavior of the spectral
heat content Q̃

(α)
D (t) with respect to Y D,(α) defined by

Q̃
(α)
D (t) :=

∫
D

Px(Y D,(α)
t ∈ D)dx.

The main results of this paper are Theorems 1.1 and 1.2. When dealing with stable
processes, the notation E will stand for the expectation of the process starting from the
origin. An open set D in R

d is said to be a (uniform) C1,1 open set if there are (localization
radius) R0 > 0 and Λ0 such that for every z ∈ ∂D there exist a C1,1 function ψ = ψz :
R

d → R satisfying ψ(0, . . . , 0) = 0, ∇ψ(0) = (0, . . . , 0), |∇ψ(x) −∇ψ(y)| � Λ0|x− y|, and an
orthonormal coordinate system CSz : y = (y1, . . . , yd−1, yd) := (ỹ, yd) with its origin at z such
that B(z,R0) ∩D = {y = (ỹ, yd) ∈ B(0, R0) in CSz : yd > ψ(ỹ)}. In this paper, we will call the
pair (R0,Λ0) the characteristics of the C1,1 open set D.

Theorem 1.1. Let D = (a, b) with b− a < ∞ when d = 1 or D be a bounded C1,1 domain
when d � 2. Then

lim
t→0

|D| − Q̃
(α)
D (t)

fα(t)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
π

Γ
(

1 − 1
α

)
|∂D| =

2|∂D|√
π

E

[(
S

(α/2)
1

)1/2
]

if 1 < α < 2,

2
π
|∂D| if α = 1,∫ ∞

0

(
|D| −Q

(2)
D (u)

) α

2Γ
(
1 − α

2

)u−1−α
2 du if 0 < α < 1,

where |D| is the Lebesgue measure of D, |∂D| = 2 when d = 1, |∂D| is the surface measure of
∂D when d � 2, and

fα(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t1/α if α ∈ (1, 2),

t ln
(

1
t

)
if α = 1,

t if α ∈ (0, 1).

When α ∈ (1, 2), we identify the third term in the small time expansion of Q̃(α)
D (t).
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Theorem 1.2. Suppose that d � 2, α ∈ (1, 2), and D is a bounded C1,1 domain in R
d. Then

the following limit

lim
t→0

Q̃
(α)
D (t) −

(
|D| − 2|∂D|√

π
E

[(
S

(α/2)
1

)1/2
]
t1/α

)
t

exists and its value is given by∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u

1
2

))
αu−1−α

2

2Γ
(
1 − α

2

)du
− 1

Γ
(
1 − α

2

) ∫
D

Px(τ (2)
D � 1)dx +

2|∂D|α√
π(α− 1)Γ

(
1 − α

2

) ,
where τ

(2)
D is the first time the Brownian motion W exits D.

Remark 1.3. We provide some upper and lower bounds for the constant when D is a ball. It
follows from [17, Corollary 1.2 (i)] and (3.13) that the constant in Theorem 1.2 is nonnegative
when ∂D is smooth. It follows from [2, Theorem 6.2] that for a bounded C1,1 domain D ⊂ R

d,
d � 2 one has ∣∣∣∣Q(2)

D (u) −
(
|D| − 2|∂D|u1/2

√
π

)∣∣∣∣ � 10d|D|u
R2

0

u > 0, (1.1)

where (R0,Λ0) is the characteristics of the C1,1 domain D. Let D = B(0, r) be a ball with
radius r. In this case, we have R0 = r

2 . Hence, the constant in Theorem 1.2 is bounded above
by ∫ 1

0

10d ωd

d rdu

(r/2)2
αu−1−α

2

2Γ
(
1 − α

2

)du +
2αωd√

π(α− 1)Γ
(
1 − α

2

)
=

2210dαωd

dΓ
(
1 − α

2

)
(2 − α)

rd−2 +
2αωd√

π(α− 1)Γ
(
1 − α

2

) .
On the other hand, by using the trivial bound Px(τ (2)

D � 1) � 1 and using [17, Corollary 1.2
(i)] we see that the constant in Theorem 1.2 is bounded below by

− ωdr
d/d

Γ
(
1 − α

2

) +
2αωd√

π(α− 1)Γ
(
1 − α

2

) =
ωd

Γ
(
1 − α

2

)( 2α√
π(α− 1)

− rd

d

)
.

Note that when r = 1 we observe that
2α√

π(α− 1)
− 1

d
>

4√
π
− 1

d
> 0 for all α ∈ (1, 2).

Note that, similar to the case of Brownian motion, the first term in the small time expansion
of Q̃(α)

D (t) in Theorem 1.1 involves the volume of the domain D and the second term is related
to the perimeter |∂D| of D. In Proposition 3.5, we will show that the second terms in the small
time expansions of Q̃

(α)
D (t) and of Q

(α)
D (t) are different when α ∈ (1, 2) and D is a bounded

open interval in R
1.

In the Brownian motion case, the third term in the expansion of Q(2)
D (t) involves the mean

curvature of D. However, the third term in the small time expansion of Q̃(α)
D (t) in Theorem 1.2

is given by a nonexplicit expression. This is probably unavoidable. See the heuristic explanation
after the proof of Theorem 1.2.



374 HYUNCHUL PARK AND RENMING SONG

The organization of the paper is as follows. In Section 2, we fix our notation and recall some
basic facts for later use. In Section 3, the main results, Theorems 1.1 and 1.2, are proved.

In this paper, we use the convention that c, lower case or capital, and with or without
subscript, stands for a constant whose value is not important and may change from one
appearance to another.

2. Preliminaries

We first collect some basic facts about stable subordinators. Recall that, for any α ∈ (0, 2), an
(α/2)-stable subordinator S

(α/2)
t is a nondecreasing Lévy process with S

(α/2)
0 = 0 and

E

[
e−λS

(α/2)
t

]
= e−tλα/2

, λ > 0, t � 0. (2.1)

It is well known that the characteristic exponent of an (α/2)-stable subordinator is given by

Ψ(θ) = |θ|α2
(
cos

πα

4
− i sin

πα

4
sgnθ

)
. (2.2)

It follows from (2.1) that S
(α/2)
t and t2/αS

(α/2)
1 have the same distribution. The subordinator

S(α/2) has a continuous transition density g(α/2)(t, x). It follows from [10, (18)] that g(α/2)(1, x)
is given by

g(α/2)(1, x) =
1
π

∞∑
n=1

(−1)n+1 Γ(1 + αn
2 )

n!
sin

(παn
2

)
x−αn

2 −1, x > 0. (2.3)

It follows from Stirling’s formula

Γ(1 + z) ∼
√

2πz
(z
e

)z

, z → ∞,

that for any ε > 0 there exists N such that for all n � N we have

Γ(1 + αn
2 )

n!
� 1 + ε

1 − ε

√
2π αn

2

(
αn
2
e

)αn
2

√
2πn

(
n
e

)n =
1 + ε

1 − ε

(α
2

)α
2 (n+1)(n

e

)−(1−α
2 )n

. (2.4)

Thus,
∞∑

n=N

∣∣∣∣(−1)n+1 Γ(1 + αn
2 )

n!
sin

(παn
2

)
x−αn

2 −1

∣∣∣∣ � ∞∑
n=N

1 + ε

1 − ε

(α
2

)α
2 (n+1)(n

e

)−(1−α
2 )n

< ∞.

Hence the infinite series in (2.3) converges absolutely for all x > 0. Using (2.3), Euler’s reflection
formula

Γ(z)Γ(1 − z) =
π

sin(πz)
, z /∈ Z,

and the absolute convergence of the series in (2.3), we get

lim
x→∞ g(α/2)(1, x)x1+α

2 =
Γ(1 + α

2 ) sin
(
πα
2

)
π

=
α

2Γ
(
1 − α

2

) . (2.5)

(We note in passing that the constant given in [8, (5.18)] is incorrect, due to some typos in
transcribing the formula from [18].) By the scaling property, the transition density g(α/2)(t, x)
is equal to t−2/αg(α/2)(1, x

t2/α
). It follows from (2.2) and the inverse Fourier transform that for

all x > 0,
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g(α/2)(1, x) = (2π)−1/2

∫
R

eiθxe−|θ|α/2(cos πα
4 −i sin πα

4 sgnθ)dθ

� (2π)−1/2

∫
R

∣∣∣eiθxe−|θ|α/2(cos πα
4 −i sin πα

4 sgnθ)
∣∣∣dθ

� (2π)−1/2

∫
R

e−|θ|α/2 cos πα
4 dθ < ∞. (2.6)

On the other hand, when x � 1 it follows from (2.3) and (2.4) that

g(α/2)(1, x) = x−α
2 −1 1

π

∞∑
n=1

(−1)n+1 Γ(1 + αn
2 )

n!
sin

(απn
2

)
x−α(n−1)

2

� x−1−α
2

1
π

∞∑
n=1

Γ(1 + αn
2 )

n!
x−α(n−1)

2

� x−1−α
2

1
π

∞∑
n=1

Γ(1 + αn
2 )

n!
� c1x

−1−α
2 . (2.7)

Hence, it follows from (2.6) and (2.7) that there exists a constant c2 > 0 such that

g(α/2)(t, x) � c2

(
t−2/α ∧ t

x1+α
2

)
, x > 0. (2.8)

We remark here that in case of symmetric stable processes, the transition density also has a
matching lower bound of the form (2.8). However, in the case of stable subordinators, a lower
bound similar to the right-hand side of (2.8) does not hold (see [14, Lemma 1]).

The following fact is from [22, Proposition 2.1] and will be used in the next section.

E

[(
S

(α/2)
1

)γ]
=

Γ
(
1 − 2γ

α

)
Γ(1 − γ)

, −∞ < γ <
α

2
. (2.9)

Now we proceed to define for D the killed subordinate Brownian motion and subordinate killed
Brownian motion with respect to an isotropic α-stable process and their respective spectral
heat contents. Let W be a Brownian motion in R

d with generator Δ and S
(α/2)
t an (α/2)-stable

subordinator independent of W . Then, the subordinate Brownian motion X(α) defined by

X
(α)
t := W

S
(α/2)
t

, t � 0,

is an isotropic α-stable process. For any domain D ⊂ R
d, the process X(α),D defined by

X
(α),D
t :=

{
X

(α)
t if t < τ

(α)
D ,

∂ if t � τ
(α)
D ,

t � 0,

where

τ
(α)
D := inf{t > 0 : X(α)

t /∈ D}, α ∈ (0, 2],

and ∂ is a point not contained in D (the cemetery point), is called a killed subordinate Brownian
motion, or more precisely, a killed isotropic α-stable process in D. When α = 2, X(2)

t will be
a Brownian motion that will be simply denoted by W . The spectral heat content of D with
respect to X(α) is defined to be

Q
(α)
D (t) :=

∫
D

Px

(
τ

(α)
D > t

)
dx.
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Now let WD be the killed Brownian motion in D. The subordinate killed Brownian motion
Y D,(α) is defined by

Y
D,(α)
t := WD

S
(α/2)
t

, t � 0.

Let ζα be the lifetime of Y D,(α), which is the same as the first time the process Y D,(α) exits
D. The spectral heat content of D with respect to Y D,(α) is defined by

Q̃
(α)
D (t) :=

∫
D

Px

(
Y

D,(α)
t ∈ D

)
dx =

∫
D

Px(ζα > t)dx, t > 0.

Note that

{ζα > t} =
{
τ

(2)
D > S

(α/2)
t

}
, t > 0.

Hence,

Q̃
(α)
D (t) =

∫
D

Px

(
τ

(2)
D > S

(α/2)
t

)
dx, t > 0.

Note that the following simple relationship is valid

{ζα > t} =
{
τ

(2)
D > S

(α/2)
t

}
⊂

{
τ

(α)
D > t

}
, t > 0,

which in turn implies

Q̃
(α)
D (t) =

∫
D

Px(ζα > t)dx �
∫
D

Px

(
τ

(α)
D > t

)
dx = Q

(α)
D (t), t > 0. (2.10)

We end this section by paraphrasing the explanation given on [19, p. 579] about the difference
between the processes X

(α),D
t and Y

(α),D
t . Look at a path of the Brownian motion W in R

d,
and put a mark on it at all the times given by the subordinator S(α/2)

t . In this way we observe
a trajectory of the process X

(α)
t . The corresponding trajectory of Y

(α),D
t is given by all the

marks on the Brownian path prior to τ
(2)
D . There is a first mark on the Brownian path following

the exit time τ
(2)
D . If this mark happens to be in D, the process X

(α)
t has not been killed yet,

and the mark corresponds to a point on the trajectory of X(α),D
t , but not to a point on the

trajectory of Y
(α),D
t . If, on the other hand, the first mark on the Brownian path following

the exit time τ
(2)
D happens to be in Dc, then trajectories of Y

(α),D
t and X

(α),D
t are equal.

See the picture on [19, p. 581] for an illustration.

3. Proofs of the main results

In this section, we prove the main results of this paper, Theorem 1.1 and Theorem 1.2. First
we deal with the case for α ∈ (1, 2).

Proposition 3.1. Let α ∈ (1, 2). Suppose that D is a bounded open interval when d = 1
or a bounded C1,1 domain when d � 2. Then,

lim
t→0

|D| − Q̃
(α)
D (t)

t1/α
=

2|∂D|√
π

E

[(
S

(α/2)
1

)1/2
]
.

Proof. Note that it follows from [2, Theorem 6.2; 21, Theorem 1.1] that

lim
t↓0

|D| −Q
(2)
D (t)

t1/2
=

2√
π
|∂D|. (3.1)
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It follows from (3.1) there exists η > 0 such that

|D| −Q
(2)
D (t)√
t

� 1 +
2|∂D|√

π
, t ∈ (0, η]

and if t � η, we have that

|D| −Q
(2)
D (t)√
t

� |D|√
η
.

Taking C := max
{

1 + 2|∂D|√
π

, |D|√
η

}
, we get

|D| −Q
(2)
D (t)√
t

� C, for all t > 0. (3.2)

By the scaling property of S(α/2)
t and Fubini’s theorem, we have

|D| − Q̃
(α)
D (t) =

∫
D

Px

(
τ

(2)
D � S

(α/2)
t

)
dx =

∫
D

Px

(
τ

(2)
D � t2/αS

(α/2)
1

)
dx

=
∫
D

∫ ∞

0

Px

(
τ

(2)
D � t2/αu

)
g(α/2)(1, u)dudx =

∫ ∞

0

∫
D

Px

(
τ

(2)
D � t2/αu

)
dxg(α/2)(1, u)du

=
∫ ∞

0

(
|D| −Q

(2)
D (t2/αu)

)
g(α/2)(1, u)du =

∫ ∞

0

(
|D| −Q

(2)
D (t2/αu)

t1/αu1/2

)
t1/αu1/2g(α/2)(1, u)du.

Hence, it follows from (3.1), (3.2), (2.9) and the Lebesgue dominated convergence theorem
that

lim
t→0

|D| − Q̃
(α)
D (t)

t1/α
=

∫ ∞

0

lim
t→0

(
|D| −Q

(2)
D (t2/αu)

t1/αu1/2

)
u1/2g(α/2)(1, u)du =

2|∂D|√
π

E

[(
S

(α/2)
1

)1/2
]
.

�

Next we deal with the case for α = 1. We need the following simple lemma.

Lemma 3.2. For any δ > 0, we have

lim
t↓0

E

[(
S

(1/2)
1

) 1
2
, 0 < S

(1/2)
1 < δ

t2

]
ln(1/t)

=
1√
π
.

Proof. It follows from (2.9) and an application of Fatou’s lemma that

lim
t↓0

E

[(
S

(1/2)
1

) 1
2
, 0 < S

(1/2)
1 <

δ

t2

]
= ∞.

Hence, it follows from L’Hôpital’s rule, (2.5), and the change of variables x = δt−2 that

lim
t↓0

E

[(
S

(1/2)
1

) 1
2
, 0 < S

(1/2)
1 < δ

t2

]
ln(1/t)

= lim
t↓0

∫ δ/t2

0
u1/2g(1/2)(1, u)du

ln(1/t)

= lim
t↓0

(δt−2)1/2g(1/2)(1, δt−2)(−2)δt−3

−1/t
= lim

t↓0
2g(1/2)(1, δt−2)(δt−2)3/2

= lim
x↑∞

2g(1/2)(1, x)x3/2 =
1√
π
. �
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Proposition 3.3. Let α = 1. Suppose that D is a bounded open interval when d = 1 or a
bounded C1,1 domain when d � 2. Then,

lim
t→0

|D| − Q̃
(1)
D (t)

t ln(1
t )

=
2|∂D|
π

.

Proof. As in the proof of Proposition 3.1. we have

|D| − Q̃
(1)
D (t) =

∫ ∞

0

(
|D| −Q

(2)
D (t2u)

tu1/2

)
tu1/2g(1/2)(1, u)du

=
∫ δt−2

0

(
|D| −Q

(2)
D (t2u)

tu1/2

)
tu1/2g(1/2)(1, u)du +

∫ ∞

δt−2

(
|D| −Q

(2)
D (t2u)

)
g(1/2)(1, u)du,

(3.3)

where the value of δ will be determined later.
For any ε > 0, it follows from (3.1) that there exists δ > 0 such that

2|∂D|√
π

− ε <
|D| −Q

(2)
D (t)√
t

<
2|∂D|√

π
+ ε, t < δ.

For this choice of δ it follows from Lemma 3.2 that

lim sup
t→0

∫ δt−2

0

(
|D|−Q

(2)
D (t2u)

tu1/2

)
tu1/2g(1/2)(1, u)du

t ln(1/t)
�

(
2|∂D|√

π
+ ε

)
1√
π
. (3.4)

Similarly we have

lim inf
t→0

∫ δt−2

0

(
|D|−Q

(2)
D (t2u)

tu1/2

)
tu1/2g(1/2)(1, u)du

t ln(1/t)
�

(
2|∂D|√

π
− ε

)
1√
π
. (3.5)

For the second term in (3.3), we get from (2.8) and the fact |D| −Q
(2)
D (t) � |D| for all t > 0

that ∫ ∞

δt−2

(
|D| −Q

(2)
D (t2u)

)
g(1/2)(1, u)du � c1|D|

∫ ∞

δt−2
u−3/2du = c2|D|t

for some constants c1 and c2. This implies that

lim sup
t→0

∫∞
δt−2

(
|D| −Q

(2)
D (t2u)

)
g(1/2)(1, u)du

t ln(1/t)
= 0. (3.6)

Since ε is arbitrary, the conclusion of the proposition follows from (3.4), (3.5), and (3.6). �

Finally, we deal with the case for α ∈ (0, 1).

Proposition 3.4. Let α ∈ (0, 1). Suppose that D is a bounded open interval when d = 1
or a bounded C1,1 domain when d � 2. Then, we have

lim
t↓0

|D| − Q̃
(α)
D (t)

t
=

∫ ∞

0

(
|D| −Q

(2)
D (u)

) α

2Γ
(
1 − α

2

)u−1−α
2 du.
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Proof. Note that by Fubini’s theorem,

1
t

(
|D| − Q̃

(α)
D (t)

)
=

1
t

∫
D

Px

(
τ

(α)
D � S

(α/2)
t

)
dx =

∫ ∞

0

(
|D| −Q

(α)
D (u)

)g(α/2)(t, u)
t

du.

When u � 1, it follows from (2.8) that(
|D| −Q

(2)
D (u)

)g(α/2)(t, u)
t

� c1|D|u−1−α
2 . (3.7)

On the other hand, when 0 < u < 1, it follows from (3.2) that |D| −Q
(2)
D (u) � Cu

1
2 . Hence,

from (2.8) we have (
|D| −Q

(2)
D (u)

)g(α/2)(t, u)
t

� Cu− 1
2−α

2 . (3.8)

Let ε > 0 and φε ∈ Cb(R1) be such that 1B(0,ε)c � φε � 1B(0, ε2 )c so that the function
u → (|D| −Q

(2)
D (u))φε(u)g(α/2)(t, u)/t is bounded, continuous, and vanishes near zero. Since

α ∈ (0, 1) it follows from [16, Corollary 8.9] and the Lebesgue dominated convergence theorem
for any η > 0 there exists t0 > 0 such that∣∣∣∣∣
∫ ∞

0

(
|D| −Q

(2)
D (u)

)
φε(u)

g(α/2)(t, u)
t

du−
∫ ∞

0

(
|D| −Q

(2)
D (u)

)
φε(u)

α

2Γ
(
1 − α

2

)u−1−α
2 du

∣∣∣∣∣< η

(3.9)

for all t � t0. It follows from (3.7), (3.8), and the Lebesgue dominated convergence theorem we
have

lim
ε→0

∫ ∞

0

(
|D| −Q

(2)
D (u)

)
φε(u)

g(α/2)(t, u)
t

du =
∫ ∞

0

(
|D| −Q

(2)
D (u)

)g(α/2)(t, u)
t

du

uniformly for all t � t0. Finally letting ε → 0 and using the Lebesgue dominated convergence
theorem in (3.9), we arrive at the conclusion of the proposition. �

Proof of Theorem 1.1. The proof is an easy consequence of Propositions 3.1, 3.3, and 3.4. �

The second term of the asymptotic expansion of Q(α)
D (t) is known when d = 1 and D is a

bouned open interval, see [21]. We now show that the second terms in the expansions of Q̃(α)
D (t)

and of Q(α)
D (t) are different when d = 1 and α ∈ (1, 2).

Proposition 3.5. Suppose that 1 < α < 2 and D ⊂ R
1 is a bounded open interval. Then,

lim
t→0

|D| −Q
(α)
D (t)

t1/α
< lim

t→0

|D| − Q̃
(α)
D (t)

t1/α
.

Proof. It is proved in [21, Theorem 1.1] that for α ∈ (1, 2),

lim
t→0

|D| −Q
(α)
D (t)

t1/α
= 2E

[
X

(α)

1

]
.

It follows from [21, Proposition 2.1] that

P

(
u � X

(α)
t

)
� P

(
u � X

(α)

t

)
� 2P

(
u � X

(α)
t

)
.
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This implies that

E

[
X

(α)
1 , X

(α)
1 > 0

]
=

∫ ∞

0

P

(
X

(α)
1 � u

)
du � E

[
X1

(α)
]

=
∫ ∞

0

P

(
X

(α)

1 � u
)
du

�
∫ ∞

0

2P

(
X

(α)
1 � u

)
du = 2E

[
X

(α)
1 , X

(α)
1 > 0

]
. (3.10)

It is shown in [22, p. 11] that E[X(α)
1 , X

(α)
1 > 0] = 1

πΓ(1 − 1
α ) and this implies together with

Theorem 1.1 that

lim
t→0

|D| −Q
(α)
D (t)

t1/α
= 2E[X

(α)

1 ] � 4
π

Γ
(

1 − 1
α

)
= lim

t→0

|D| − Q̃
(α)
D (t)

t1/α
.

Now we assume that limt→0
|D|−Q

(α)
D (t)

t1/α
= limt→0

|D|− ˜Q
(α)
D (t)

t1/α
. Then, this would imply by

(3.10) that

2
∫ ∞

0

P(X
(α)

1 � u)du = 2E

[
X1

(α)
]

= 4E

[
X

(α)
1 , X

(α)
1 � 0

]
= 4

∫ ∞

0

P(X(α)
1 � u)du,

which would imply that P(u � X1
(α)

) = 2P(u � X
(α)
1 ) for almost every u > 0. But this

contradicts [7, Proposition VIII.4] which says that

lim
u→∞

P

(
X

(α)

1 � u
)

P

(
X

(α)
1 � u

) = 1. �

Combining Theorem 1.1 with (2.10), we immediately get the following: when d � 2, D is a
bounded C1,1 domain and α ∈ (1, 2), we have

lim sup
t→0

|D| −Q
(α)
D (t)

t1/α
� 2

π
Γ
(

1 − 1
α

)
|∂D|, (3.11)

and when α = 1

lim sup
t→0

|D| −Q
(1)
D (t)

t ln(1
t )

� 2
π
|∂D|. (3.12)

Comparing (3.11) and (3.12) with [22, Theorem 1.3], we observe that (3.11) and (3.12) are
better upper bounds. We remark that it is conjectured in [22] that the limits in (3.7) and (3.8)
actually exist but this problem is still open.

Now we establish a three-term small time asymptotic expansion for Q̃(α)
D (t) when α ∈ (1, 2).

First we need the following simple fact.

Lemma 3.6. Let α ∈ (1, 2). Then,

lim
t→0

E

[(
S

(α/2)
1

)k/2

, 0 < S
(α/2)
1 < t−2/α

]
t1−

k
α

=
α

(k − α)Γ
(
1 − α

2

) , k � 2.
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Proof. It follows from (2.9) that both the numerator and the denominator diverge to ∞ as
t → 0 when k � 2. Hence, it follows from L’Hôpital’s rule and (2.5) that

lim
t→0

E

[(
S

(α/2)
1

)k/2

, 0 < S
(α/2)
1 < t−2/α

]
t1−

k
α

= lim
t→0

∫ t−2/α

0
sk/2g(α/2)(1, s)ds

t1−
k
α

= lim
t→0

t−k/αg(α/2)(1, t−2/α)−2
α t−

2
α−1(

1 − k
α

)
t−

k
α

= lim
t→0

2
k − α

g(α/2)(1, t−2/α)t−1− 2
α =

α

(k − α)Γ
(
1 − α

2

) .
�

Note that we have

Q̃
(α)
D (t) −

(
|D| − 2|∂D|√

π
E

[(
S
α/2
1

)1/2
]
t1/α

)

=
∫
D

Px

(
τ

(2)
D � S

(α/2)
t

)
dx−

(
|D| − 2|∂D|√

π
E

[(
S
α/2
1

)1/2
]
t1/α

)

=
∫
D

∫ ∞

0

Px

(
τ

(2)
D � st2/α

)
g(α/2)(1, s)dsdx−

(
|D| − 2|∂D|√

π
E

[(
S
α/2
1

)1/2
]
t1/α

)

=
∫ ∞

0

(∫
D

Px

(
τ

(2)
D � st2/α

)
dx−

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds

=
∫ ∞

0

(
Q

(2)
D (st2/α) −

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds

=
∫ t−2/α

0

(
Q

(2)
D (st2/α) −

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds

+
∫ ∞

t−2/α

(
Q

(2)
D (st2/α) −

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds. (3.13)

Now we estimate the first expression of (3.13).

Lemma 3.7. Suppose d � 2 and α ∈ (1, 2). Assume that D is a bounded C1,1 domain. Then,

lim
t→0

1
t

∫ t−2/α

0

(
Q

(2)
D (st2/α) −

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds

=
∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
α

2Γ
(
1 − α

2

)u−1−α
2 du.

Proof. By the change of the variables u = t2/αs and the scaling property of g(α/2)(t, x),

1
t

∫ t−2/α

0

(
Q

(2)
D (st2/α) −

(
|D| − 2|∂D|√

π
s1/2t1/α

))
g(α/2)(1, s)ds

=
∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
t−

2
α−1g(α/2)(1, t−2/αu)du

=
∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
g(α/2)(t, u)

t
du. (3.14)
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By (2.8), we have g(α/2)(t, u)/(t) � c1u
−1−α

2 . It follows from [2, Theorem 6.2] that there exists
a constant c2 such that ∣∣∣∣Q(2)

D (u) −
(
|D| − 2|∂D|√

π
u

1
2

)∣∣∣∣ � c2u, u > 0.

Hence, the integrand in (3.14) is bounded above by c3u
−α

2 . Let ε > 0 and φε ∈ Cb(R1) be
such that 1B(0,ε)c � φε � 1B(0, ε2 )c . Hence, it follows from [16, Corollary 8.9] and the Lebesgue
dominated convergence theorem that

lim
t→0

∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
φε(u)

g(α/2)(t, u)
t

du

=
∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
φε(u)

(
lim
t→0

g(α/2)(t, u)
t

)
du

=
∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
φε(u)

α

2Γ
(
1 − α

2

)u−1−α
2 du.

Letting ε → 0, we immediately get the assertion of the lemma by the Lebesgue dominated
convergence theorem. �

The two lemmas below are about the second term in (3.13).

Lemma 3.8. Let α ∈ (1, 2). Then, we have

lim
t→0

1
t

∫ ∞

t−2/α

(
|D| −Q

(2)
D (t2/αs)

)
g(α/2)(1, s)ds =

1
Γ
(
1 − α

2

) ∫
D

Px(τ (2)
D � 1)dx.

Proof. It follows from Fubini’s theorem that∫ ∞

t−2/α

(
|D| −Q

(2)
D (t2/αs)

)
g(α/2)(1, s)ds

=
∫ ∞

t−2/α

∫
D

Px

(
τ

(2)
D � t2/αs

)
dxg(α/2)(1, s)ds =

∫
D

∫ ∞

t−2/α
Px

(
τ

(2)
D � t2/αs

)
g(α/2)(1, s)dsdx.

It follows from L’Hôpital’s rule and (2.5) that

lim
t→0

∫∞
t−2/α Px(τ (2)

D � t2/αs)g(α/2)(1, s)ds
t

= lim
t→0

Px

(
τ

(2)
D � 1

) 2
α
g(α/2)(1, t−2/α)t−

2
α−1 =

1
Γ
(
1 − α

2

)Px

(
τ

(2)
D � 1

)
.

Now the result follows from the bounded convergence theorem. �

Lemma 3.9. Let α ∈ (1, 2). Then,

lim
t→0

1
t1−

1
α

∫ ∞

t−2/α
s1/2g(α/2)(1, s)ds =

α

(α− 1)Γ
(
1 − α

2

) .
Proof. First note that by (2.9) we have limt→0

∫∞
t−2/α s1/2g(α/2)(1, s)ds = 0. Hence, by

L’Hôpital’s rule and (2.5) we have

lim
t→0

1
t1−

1
α

∫ ∞

t−2/α
s1/2g(α/2)(1, s)ds =

α

(α− 1)Γ
(
1 − α

2

) . �
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Proof of Theorem 1.2. The result follows from Lemmas 3.6, 3.7, 3.8, and 3.9. �

Here is a heuristic argument why the third term in the expansion of Q̃(α)
D (t) involves more

than the mean curvature of D. When D is a bounded smooth domain, the following asymptotic
expansion of Q(2)

D (t) is well known (for example see [17]):

Q
(2)
D (t) ∼

∞∑
n=0

cnt
n
2 , as t → 0.

Hence, if the series indeed converges (there exists a case where this series does not converge)
and if one could justify the interchange of the integral and the sum, one expects that

lim
t→0

∫ 1

0

(
Q

(2)
D (u) −

(
|D| − 2|∂D|√

π
u1/2

))
g(α/2)(t, u)

t
du =

∫ 1

0

( ∞∑
n=2

cnu
n/2

)
lim
t→0

g(α/2)(t, u)
t

du

=
∫ 1

0

( ∞∑
n=2

cnu
n/2

)
α

2Γ
(
1 − α

2

)u−1−α
2 du =

∞∑
n=2

2cn
n− α

α

2Γ
(
1 − α

2

) .
This suggests that even for smooth domains one cannot expect the third term in the expansion
of Q̃(α)

D (t) to involve the mean curvature of D only. The limit contains the information for all
the coefficients of the asymptotic expansion of Q(2)

D (t).
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