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Abstract

In this thesis, we study potential theoretic properties of harmonic functions and spectral problems

of a large class of Lévy processes using probabilistic techniques.

In chapter 3 we prove sharp two-sided Green function estimates in bounded -fat domains D for

a large class of Lévy processes, which can be considered as perturbations of certain subordinate

Brownian motions. In particular, we prove that in bounded C1,1 domains D, the Green func-

tion GY

D
(x, y) of symmetric Lévy processes Y whose Lévy densities are close to those of certain

subordinate Brownian motions with characteristic exponent  (|⇠|) = �(|⇠|2) satisfies

GY

D(x, y) ⇣

 
1 ^

�(|x� y|�2)p
�(�D(x)�2)�(�D(y)�2)

!
1

|x� y|d �(|x� y|�2)
. (0.0.1)

In chapter 4 we use the Green function comparability result to obtain a version of the boundary

Harnack principle for positive harmonic functions that vanish outside a part of the boundary of D

and some small ball with respect to perturbations of SBMs in bounded -fat domains D.

In chapter 5 we use the boundary Harnack principle to prove that the Martin boundary and

the minimal Martin boundary of -fat domains D with respect to Y can be identified with the

Euclidean boundary of D.

In chapter 6 we turn our attention to some spectral problems about relativistic stable processes.

We establish the asymptotic expansion of the trace (partition function) Zm

D
(t) of relativistic stable

processes on bounded C1,1 open sets and Lipschitz open sets as t ! 0.
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Chapter 1

Introduction

The study of fine potential theory of discontinuous (jump) Lévy processes started in the late

90’s with the study of stable processes. The (symmetric) ↵-stable processes are Lévy processes

with characteristic functions e�t|⇠|↵ , where ↵ is in (0, 2]. When ↵ = 2 one obtains Brownian

motions, which have continuous sample paths; and when 0 < ↵ < 2, the corresponding processes

are pure jump processes. ↵-stable processes with ↵ 2 (0, 2) have various applications in physics,

operation research, queuing theory, mathematical finance, and risk estimation. In physics, they

are often called Lévy flights and are used in many concepts in physics such as turbulent di↵usion,

vortex dynamics, anomalous di↵usion in rotating flows, and molecular spectral fluctuation. In

mathematical finance, ↵-stable processes are used to model stock returns in incomplete markets.

Even though discontinuous stable processes are more suitable to model financial data than their

continuous counterparts, it has been observed that the data tends to be more Gaussian in a large

time scale, which can not be explained using stable processes. Relativistic stable processes with

massm are pure jump Lévy processes with characteristic functions exp(�t((m2/↵+|⇠|2)↵/2�m) and

seem to be good models to explain such cases. Relativistic stable processes also have applications in

physics. When ↵ = 1 relativistic stable processes correspond to the kinetic energy of a relativistic

particle with mass m.

Both stable and relativistic stable processes can be considered as members of a large class of

Lévy processes called subordinate Brownian motions (SBM). Subordinate Brownian motions are

Brownian motions observed at an independent random time (subordinator). When the Laplace

exponent �(�) of the subordinator is given by �(�) = �↵/2, the corresponding SBMs become ↵-

stable processes and when �(�) = (� + m2/↵)↵/2 � m, they correspond to relativistic ↵-stable

processes with mass m. Hence, the family of SBMs contains a large class of interesting examples

and is still more tractable than general Lévy processes. SBMs also arise naturally in finance and
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it is asserted that the asset price should be modeled as SBMs rather than Brownian motions.

The goal of this thesis is to study potential and spectral properties of SBMs and their perturba-

tions. More precisely in chapter 3, we will prove the generalized 3G theorem for certain classes of

SBMs and use this to prove that Green functions of SBMs and their perturbations are comparable

in bounded -fat domains. In chapter 4, we use the Green function comparability result to prove

the boundary Harnack principle (BHP) for perturbations of SBMs considered in chapter 3. In

chapter 5, we also prove that the Martin boundary and the minimal Martin boundary of -fat

domains with respect to perturbations of SBMs can be identified with the Euclidean boundary of

the domain. In chapter 6, we turn our attention to some spectral problems of relativistic stable

processes. We prove the asymptotic expansion of the trace (partition function) of relativistic stable

processes for bounded C1,1 open sets and bounded Lipschitz open sets.

The 3G theorem is a very important tool in studying (local) Schrödinger operators. It was

established for Brownian motions in bounded Lipschitz domains for d � 3 in [28]. Later it was

extended to bounded uniformly John domains for d � 3 in [2] (See [6, 33, 52, 56] for d = 2). For

symmetric ↵-stable processes, ↵ 2 (0, 2), it was proved for bounded C1,1 domains in [21, 22, 44].

More precisely, it was proved in [21, 22, 44] that for every d > ↵ and any bounded C1,1 domains

D there exists a positive constant c = c(D,↵) such that

eGD(x, y) eGD(y, z)
eGD(x, z)

 c
|x� z|d�↵

|x� y|d�↵|y � z|d�↵
, x, y, z 2 D, (1.0.1)

where eGD is the Green function of symmetric ↵-stable processes for D. Later (1.0.1) was extended

to bounded Lipschitz domains for symmetric ↵-stable processes (0 < ↵ < 2) in [34] and even to

bounded -fat open sets in [54].

When the processes are discontinuous, there is a large class of additive functionals which are not

continuous. Such additive functionals give rise to a large family of non-local Schrödinger operators.

In order to deal with non-local Schrödinger operators, one needs the generalized 3G theorem,

which gives an upper bound on eG(x, y, z, w) := eGD(x, y) eGD(z, w)/ eGD(x,w) where y and z can be

di↵erent (see Theorem 3.2.16). The generalized 3G theorem was proved in [35] for symmetric stable

processes in bounded -fat open sets (see also [34]) and it can be stated as there exist constants
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c = c(D,↵) and 0 < ⌘ < ↵ such that for all x, y, z, w 2 D

eG(x, y, z, w)  c

✓
|x� w| ^ |y � z|

|x� y|
_ 1

◆
⌘
✓
|x� w| ^ |y � z|

|z � w|
_ 1

◆
⌘

|x� w|d�↵

|x� y|d�↵|z � w|d�↵
. (1.0.2)

We first extend (1.0.2) to subordinate Brownian motions considered in [40, 41, 43] in bounded -fat

open sets D. Then we use the generalized 3G theorem to find concrete su�cient conditions for the

Kato class of the subordinate Brownian motions (See Theorem 3.3.4, 3.3.5).

Sharp two-sided Green function estimates for a large class of subordinate Brownian motions X

in -fat open sets D were established in [43]. The main goal of chapter 3 is to extend this result

to more general Lévy processes. We prove that, for symmetric Lévy processes Y which can be

considered as perturbations of processes X studied in [43], the Green function GD(x, y) of X in D

and its counterpart GY

D
(x, y) are comparable for any bounded -fat domains D. Let J be the Lévy

density of X, then the processes Y are symmetric purely discontinuous Lévy processes with the

Lévy density JY such that |�(x)|  cmax{|x|�d+⇢, 1} for some constants c > 0, ⇢ 2 (0, d) where

�(x) = JY (x)� J(x). Note that our main assumption is about the behavior of the Lévy density of

Y near 0 and we do not impose any restriction about � outside the unit ball other than � being

bounded there. The Lévy density of Y may vanish outside the unit ball. In this case Y only

have jumps of size less than 1 and they correspond to a natural generalization of truncated stable

processes studied in [37, 38]. One of the main tools used in this chapter is the drift transform

studied in [26]. We first use the drift transform and our generalized 3G theorem to show that,

under the additional assumption that JY (x) � J(x) for all x 2 Rd, GY

D
(x, y) is comparable to

GD(x, y) for any bounded -fat (not necessarily connected) open sets D (Theorem 3.4.6). Then we

deal with the general case where � can take both signs (Theorem 3.4.13).

The boundary Harnack principle (BHP) for classical nonnegative harmonic functions is a very

deep result in potential theory and has very important applications in probability and potential

theory. The boundary Harmonic principle for nonnegative harmonic functions with respect to

non-local operators (or, equivalently, discontinuous Markov processes) was first established in [10]

for symmetric stable processes in Lipschitz domains. Since then, the result has been generalized

in various directions. In one direction, the BHP is established for more general open sets than

Lipschitz domains. In [54], the boundary Harnack principle was established for -fat open sets
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for nonnegative harmonic functions with respect to rotationally symmetric stable processes. The

boundary Harnack principle has also been established for arbitrary open sets. In [12], the authors

proved the boundary Harnack principle for rotationally symmetric stable processes in arbitrary

open sets with the constant not depending on the geometry of the open sets. This type of result

is known as the uniform boundary Harnack principle. In another direction, the boundary Harnack

principle has been established for nonnegative harmonic functions with respect to di↵erent classes

of Lévy processes. In [40], the authors proved the boundary Harnack principle for nonnegative

harmonic functions with respect to a wide class of subordinate Brownian motions in bounded -fat

open sets. In [42], the authors proved the uniform boundary Harnack principle for very general

Lévy processes which are not necessarily subordinate Brownian motions. In [37], the boundary

Harnack principle was proved for nonnegative harmonic functions with respect to truncated stable

processes in -fat open sets with an extra condition that the harmonic functions vanish outside

a small ball as well as near a part of the boundary of the domain and for nonnegative harmonic

functions with respect to truncated stable processes in bounded convex domains without the extra

condition mentioned above.

In chapter 4, we generalize the boundary Harnack principle for symmetric Lévy processes Y ,

which can be considered as perturbations of subordinate Brownian motions that appeared in chapter

3. In this version of the boundary Harnack principle, we assume that the harmonic functions vanish

outside a small ball as well as a part of the boundary of the domain. This is not a merely technical

point since it was proved in [37] that without the condition that harmonic functions vanishing

outside a small ball, the boundary Harnack principle for truncated stable processes fails to hold

in non-convex domains. One of the main ingredients to prove the boundary Harnack principle is

the uniform Green functions comparability result of the Green functions GX

D
(x, y) and GY

D
(x, y) of

subordinate Brownian motion X and their perturbations Y for all su�ciently small bounded -fat

domains D.

In chapter 5, we study the Martin boundary and the minimal Martin boundary of bounded -fat

domains with respect to Y . Superharmonic and harmonic functions with respect to killed Markov

processes have been studied in the context of general theory of Markov processes and their potential

theory in [46]. However, it was not until late 1990’s and early 2000’s that special case of harmonic
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functions with respect to killed stable processes was investigated in [11, 23, 47]. Later the study

of the Martin boundary of various jump processes has been investigated in [16, 17, 37, 38, 40].

In this chapter, we show that for bounded -fat domains, the Martin boundary and the minimal

Martin boundary with respect to perturbations of subordinate Brownian motions can be identified

with the Euclidean boundary of the domain. Furthermore when the domain is a bounded C1,1

domain, we get sharp two-sided estimates for the Martin kernel of the domain with respect to Y .

The (uniform) Green functions comparability result plays a crucial role in this chapter.

In chapter 6, we study the spectral problems of relativistic stable processes. In particular, we

study the asymptotic behavior of the trace of the (killed) relativistic stable processes as t ! 0. The

asymptotic behaviors of the trace ZD(t) of killed Brownian motions (i.e., killed symmetric ↵-stable

processes with ↵ = 2) in bounded domains D of Rd have been extensively studied by many authors.

It is shown in [7] that, when D is a bounded C1,1 domain,

����ZD(t)� (4⇡t)�d/2

✓
|D|�

p
⇡t

2
|@D|

◆���� 
c|D|t1�d/2

R2
, t > 0.

The following asymptotic result

ZD(t) = (4⇡t)�d/2

✓
|D|�

p
⇡t

2
|@D|+ o(t1/2)

◆
, t ! 0, (1.0.3)

was proved in [13] when D is a bounded C1 domain. (1.0.3) was subsequently extended to Lipschitz

domains in [14].

The asymptotic behaviors of the trace Z0
D
(t) of killed symmetric ↵-stable processes, 0 < ↵ < 2,

in open sets of Rd have been studied in [3, 4]. It was shown in [3] that, for any bounded C1,1 open

sets D, �����Z
0
D(t)�

C1|D|

td/↵
+

C2|@D|t1/↵

td/↵

����� 
c|D|t2/↵

r20t
d/↵

,

where C1 and C2 are the same as in Theorem 6.1.1 and c is a positive constant depending on d

and ↵ only. It was shown in [4] that, when D is a bounded Lipschitz domain, Z0
D
(t) satisfies

td/↵Z0
D(t) = C1|D|� C2H

d�1(@D)t1/↵ + o(t1/↵).
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In chapter 6, we prove the asymptotic expansion of the trace (partition functions) Zm

D
(t) of

relativistic stable processes as t ! 0 in Theorem 6.1.1 and 6.1.2 for bounded C1,1 open sets and

bounded Lipschitz open sets, respectively. For relativistic stable processes, the corresponding trace

Zm

D
(t) has similar first and second leading terms as the trace of stable processes but there appear

extra twist terms. We note here that as in the case of stable processes, the first leading term of

Zm

D
(t) involves an area of the domain and the second leading term involves a perimeter of the

domain.

In this thesis we always assume that ↵ 2 (0, 2) and d is a positive integer with d > ↵. We

will use the following convention: The values of the constants C0, C1, M , r0, r1, r2, · · · and "1

will remain the same throughout this thesis, while c, c1, c2, · · · stand for constants whose values are

unimportant and which may change from one appearance to another. The labeling of the constants

c0, c1, c2, · · · starts anew in the statement of each result. We use “:=” to denote a definition, which

is read as “is defined to be”. We denote a ^ b := min{a, b}, a _ b := max{a, b}. f(t) ⇣ g(t), t ! 0

(f(t) ⇣ g(t), t ! 1, respectively) means that the quotient f(t)/g(t) stays bounded between two

positive constants as t ! 0 (as t ! 1, respectively). For any open set U , we denote by �U (x) the

distance of a point x to the boundary of U , i.e., �U (x) = dist(x, @U).
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Chapter 2

Preliminaries

2.1 Lévy Processes

Definition 2.1.1. Stochastic processes Xt are called Lévy processes if they satisfy

1. For any choice of n � 1 and 0  t0 < t1 < · · · < tn, the random variables Xt0 , Xt1 �Xt0 , Xt2 �

Xt1 , · · · , Xtn �Xtn�1 are independent.

2. X0 = 0 almost surely.

3. The distribution of Xt+s �Xs does not depend on s.

4. There is ⌦0 2 F with P[⌦0] = 1 such that, for every ! 2 ⌦0, Xt(!) is right continuous in t � 0

and has left limits in t > 0.

For any probability measure µ, we define its characteristic function µ̂(z) :=
R
ei<z,⇠>f(⇠)d⇠. A

measure µ is said to be infinitely divisible if for any n � 1 there exists a measure µn such that

µ = µ⇤n
n , where ⇤ is a convolution of measure. It is well known that ([50, Theorem 7.10] stochastic

processes X are Lévy processes if and only if µ is infinitely divisible, where µ = PX1 . It is also

well known that if µ is infinitely divisible, its characteristic function µ̂ has a unique decomposition

called the Lévy-Khintchine formula.

Theorem 2.1.2. 1. If µ is an infinitely divisible distribution on Rd
, then

µ̂(z) = exp


�
1

2
< z,Az > +i < �, z > +

Z

Rd

�
ei<z,x>

� 1� i < z, x > 1B(0,1)(x)
�
⌫(dx)

�
, z 2 Rd,

(2.1.1)

where A is a symmetric nonnegative-definite d⇥ d matrix, ⌫ is a measure on Rd
satisfying

⌫({0}) = 0 and

Z

Rd

�
|x|2 ^ 1

�
⌫(dx) < 1, (2.1.2)

7



and � 2 Rd
.

2. The representation of µ̂(z) in (2.1.1) by A, ⌫, and � is unique.

3. Conversely, if A a symmetric nonnegative-definite d⇥d matrix, ⌫ is a measure satisfying (2.1.2),

and � 2 Rd
, then there exists an infinitely divisible distribution µ whose characteristic function is

given by (2.1.1).

Example 2.1.3. 1. Let A = 1, � = 0, and ⌫ ⌘ 0 in (2.1.1). The corresponding processes X are

Brownian motions, whose sample paths are continuous almost surely.

2. Let A ⌘ 0, � = 0, and ⌫(dx) = c(d,↵)
|x|d+↵

dx in (2.1.1), where ↵ 2 (0, 2). The corresponding processes

are ↵-stable processes of index ↵. Unlike Brownian motions, the sample path of ↵-stable processes

is discontinuous.

2.2 Subordinate Brownian Motions

The purpose of this section is to develop the theory of subordinate Brownian motions under the

assumption that the Laplace exponent of the subordinator is a complete Bernstein function and

is comparable to a regularly varying function at infinity. We will closely follow the argument and

notations in [41]. We first recall the definition of subordinators and their relation to Bernstein

functions. Recall that a subordinator S = (St) is an increasing Lévy process taking values in [0,1)

with S0 = 0. A subordinator is completely characterized by its Laplace exponent � via

E [exp(��St)] = exp(�t�(�)), � > 0.

The Laplace exponent � can be written as

�(�) = b�+

Z 1

0
(1� e��t)µ(dt),

where b � 0 and µ is a �-finite measure on (0,1) satisfying

Z 1

0
(1 ^ t)µ(dt) < 1.

8



The constant b is called the drift, and µ the Lévy measure of the subordinator S. Now we recall the

definition of Bernstein functions and the relation between Bernstein functions and subordinators.

A C1 function � : (0,1) ! [0,1) is called a Bernstein function if (�1)nDn�  0 for every positive

integers n. Every Bernstein function has a representation (cf. [51, Theorem 3.2])

�(�) = a+ b�+

Z 1

0
(1� e��t)µ(dt), (2.2.1)

where a, b � 0 and µ is a measure on (0,1) satisfying
R1
0 (1 ^ t)µ(dt) < 1. Thus a nonnegative

function � on (0,1) is the Laplace exponent of a subordinator if and only if it is a Bernstein

function with �(0+) = 0. A Bernstein function is called a complete Bernstein function if the Lévy

measure µ has a completely monotone density µ(t), i.e., (�1)nDnµ � 0 for every non-negative

integer n.

The potential measure of the subordinator S is defined by

U(A) = E
Z 1

0
1{St2A}dt, A ⇢ [0,1).

Note that U(A) is the expected time that the subordinator S spends in the set A. The Laplace

transform of the measure U is given by

LU(�) =

Z 1

0
e��tdU(t) = E

Z 1

0
exp(�tSt)dt =

1

�(�)
.

From now on we will impose the condition that every Bernstein function that appears as the

Laplace exponent of some subordinator is always a complete Bernstein function with µ(0,1) = 1

and zero drift b = 0. That is,

� is a complete Bernstein function, µ(0,1) = 1, and b = 0. (2.2.2)

Note that when µ(0,1) = 1 and � is a completely Bernstein function, the potential measure U

of S has a completely monotone density u. (See [41, Corollary 2.3].) Next we will impose another

condition on � to determine the asymptotic behavior of u and µ near the origin. Note that this

essentially follows from Tauberian type theorems and the monotone density theorem by using the

9



information about � near infinity. If we impose a condition about � near 0, then it is possible to

determine the asymptotic behavior of u and µ near infinity. Since we will be dealing with processes

on bounded sets D, the behavior near the origin is more important and we will just impose the

condition about � near infinity.

From now on, we will assume that there exist ↵ 2 (0, 2) and a function ` : (0,1) ! (0,1) which

is measurable, locally bounded and slowly varying at infinity such that

�(�) ⇣ �↵/2`(�), �! 1. (2.2.3)

Under conditions (2.2.2) and (2.2.3), it follows from [41, Theorem 2.9, 2.10] that

Theorem 2.2.1 (Theorem 2.9 [41]). Let S be a complete subordinator with Laplace exponent �

satisfying (2.2.3). Then the potential density u of S satisfies

u(t) ⇣ t�1�(t�1)�1
⇣

t↵/2�1

`(t�1)
, t ! 0 + .

Theorem 2.2.2 (Theorem 2.10 [41]). Let S be a complete subordinator with Laplace exponent �

satisfying (2.2.3). Then the Lévy density µ of S satisfies

µ(t) ⇣ t�1�(t�1) ⇣ t�↵/2�1`(t�1), t ! 0 + .

Now we will define and investigate subordinate Brownian motions (SBM). Loosely speaking,

subordinate Brownian motions are just time changed Brownian motions. The time is represented

by an independent increasing Lévy process (subordinator) and can be considered as an operational

time or an intrinsic time. When we deal with stochastic models, it is often desirable to use

subordinate Brownian motions rather than Brownian motions and this is one motivation for the

study of subordinate Brownian motions. Now we will define SBMs rigorously. Let B = (Bt,Px) be

Brownian motions in Rd with transition density p(t, x, y) = p(t, y � x) given by

p(t, x) = (4⇡t)�d/2 exp(�
|x|2

4t
), t > 0, x, y 2 Rd.

Note that Brownian motions here are twice faster than usual Brownian motions in the literature.
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The semigroup (Pt : t � 0) of B is defined by Ptf(x) = Ex[f(Bt)] =
R
Rd p(t, x, y)f(y)dy, where f

is a nonnegative Borel function on Rd. Note that when d � 3, the Green function G2(x, y) =

G2(x� y), x, y 2 Rd of B exists and

G2(x) =

Z 1

0
p(t, x)dt =

�(d/2� 1)

4⇡d/2
|x|�d+2.

Let S = (St, t � 0) be a complete subordinator which is independent to B with the Laplace

exponent �(�), the Lévy measure µ and the potential measure U . We will always assume that

� satisfies (2.2.2) and (2.2.3). Stochastic processes defined by Xt := BSt
are called subordinate

Brownian motions and they are Lévy processes with the Lévy exponent �(x) = �(|x|2) (see [50,

pp. 197-198]). The semigroup of X is given by (Qt : t � 0)

Qtf(x) = Ex[f(Xt)] = Ex[f(B(St))] =

Z 1

0
Psf(x)P(St 2 ds). (2.2.4)

From (2.2.4), it is easy to see that the transition density (heat kernel) of X is given by q(t, x, y) =

q(t, x� y), where

q(t, x) =

Z 1

0
p(s, x)P(St 2 ds).

We will always assume that the Lévy processes X are transient. According to the criterion of

Chung-Fuchs type (see [50, pp. 252-253]), the Lévy processes X are transient if and only if for

some small r > 0,
R
{|x|<r}

1
�(x)dx < 1. Since �(x) = �(|x|2), it follows that the Lévy processes X

are transient if and only if Z

0+

�d/2�1

�(�)
d� < 1. (2.2.5)

This is always true when d � 3 and when d = 1, 2 we will impose another assumption on � to

guarantee that the Lévy processes X are transient. This condition is as follows. For d  2, there

exists � 2 [0, d/2) such that

lim inf
�!0

�(�)

��
> 0. (2.2.6)

Note that when (2.2.6) is true, (2.2.5) is also true. Now we will define the potential measure and

the Green function of X. For x 2 Rd and a Borel subset A 2 Rd, the potential measure of X is

11



given by

G(x,A) = Ex

Z 1

0
1{Xt2A}dt =

Z 1

0
Qt1A(x)dt =

Z 1

0

Z 1

0
Ps1A(x)P(St 2 ds)dt

=

Z 1

0
Ps1Au(s)ds =

Z

A

Z 1

0
p(s, x, y)dsdy.

Let G(x, y) denote the density of the potential measure G(x, ·). Then it is easy to see that G(x, y) =

G(y � x), where

G(x) =

Z 1

0
p(t, x)U(dt) =

Z 1

0
p(t, x)u(t)dt.

The Lévy measure ⇧ of X is given by

⇧(A) =

Z

A

Z 1

0
p(t, x)µ(dt)dx =

Z

A

J(x)dx, A ⇢ Rd,

where

J(x) :=

Z 1

0
p(t, x)µ(dt) =

Z 1

0
p(t, x)µ(t)dt (2.2.7)

is the Lévy density of X. Define the function j : (0,1) ! (0,1) by

j(r) =

Z 1

0
(4⇡)�d/2t�d/2 exp(�

r2

4t
)µ(dt), r > 0.

Note that by (2.2.7), J(x) = j(|x|), x 2 Rd
\ {0}. Since x ! p(t, x) is continuous and radially

decreasing, we conclude that both G and J are continuous on Rd and radially decreasing.
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Chapter 3

Green Function Estimations

3.1 Preliminaries

In this section, we recall some preliminary results about subordinate Brownian motions consid-

ered in [40, 41]. The following theorem establishes the asymptotic behaviors of G and j near the

origin (see [43, Theorem 2.9, 2.11]).

Theorem 3.1.1.

(i)

G(x) ⇣
1

|x|d�(|x|�2)
⇣

1

|x|d�↵`(|x|�2)
, |x| ! 0.

(ii)

J(x) = j(|x|) ⇣
�(|x|�2)

|x|d
⇣
`(|x|�2)

|x|d+↵
, |x| ! 0.

For any open set D, we use ⌧D to denote the first exit time of D, i.e., ⌧D = inf{t > 0 : Xt /2 D}.

Given an open set D ⇢ Rd, we define XD
t (!) = Xt(!) if t < ⌧D(!) and XD

t (!) = @ if t � ⌧D(!),

where @ is a cemetery state. XD is called the killed subordinate Brownian motion X in D. We

now recall the definition of harmonic functions with respect to X.

Definition 3.1.2. Let D be an open subset of Rd
. A nonnegative function u defined on Rd

is said

to be

(1) harmonic in D with respect to X if

u(x) = Ex [u(X⌧B
)] , x 2 B

for every open set B whose closure is a compact subset of D;

13



(2) regular harmonic in D with respect to X if for each x 2 D,

u(x) = Ex [u(X⌧D
)] .

The following version of the Harnack inequality is [43, Theorem 2.14].

Theorem 3.1.3. For any L > 0, there exists a positive constant c = c(d,�, L) > 0 such that

the following is true: If x1, x2 2 Rd
and r 2 (0, 1) are such that |x1 � x2| < Lr, then for every

nonnegative function u which is harmonic with respect to X in B(x1, r) [B(x2, r), we have

c�1u(x2)  u(x1)  cu(x2).

For any open set D in Rd, we will use GD(x, y) to denote the Green function of XD. Using the

continuity and the radial decreasing property of G, we can easily check that GD is continuous in

(D ⇥D) \ {(x, x) : x 2 D}. We will frequently use the well-known fact that GD(·, y) is harmonic

in D \ {y}, and regular harmonic in D \B(y, ") for every " > 0.

The following concept was introduced in [54].

Definition 3.1.4. Let  2 (0, 1/2]. We say that an open set D in Rd
is -fat if there exists r0 > 0

such that for each Q 2 @D and r 2 (0, r0), D \ B(Q, r) contains a ball B(Ar(Q),r). The pair

(r0,) is called the characteristics of the -fat open set D.

The following boundary Harnack principle is [41, Theorem 4.22].

Theorem 3.1.5. ([40, Theorem 4.8], [41, Theorem 4.22]) Suppose that D is a -fat open set with

characteristics (r0,). There exists a constant c = c(d, r0,,�) > 1 such that, if r 2 (0, r0 ^
1
4 ] and

Q 2 @D, then for any nonnegative functions u, v in Rd which are regular harmonic in D\B(Q, 2r)

with respect to X and vanish in Dc
\B(Q, 2r), we have

c�1 u(Ar(Q))

v(Ar(Q))


u(x)

v(x)
 c

u(Ar(Q))

v(Ar(Q))
, x 2 D \B(Q,

r

2
).

14



3.2 Generalized 3G Theorem

In this section, we prove a generalized 3G theorem for X in a bounded -fat open set D. This

theorem will play an important role later in this chapter.

We first present some preliminary results which are valid for any bounded open set D. The

following proposition is a combination of [43, Proposition 3.2 and Lemma 3.3].

Proposition 3.2.1. Suppose D is a bounded open set in Rd
. (i) There exists a positive constant

C0 = C0(diam(D),�, d) such that

GD(x, y)  C0
1

|x� y|d�↵`(|x� y|�2)
, x, y 2 D. (3.2.1)

(ii) For every L > 0, there exists c = c(diam(D),�, L, d) > 0 such that for every |x � y| 

L(�D(x) ^ �D(y)),

GD(x, y) � c
1

|x� y|d�↵`(|x� y|�2)
.

In the remainder of this section, we assume D is a bounded -fat open set with characteristics

(r0,). Without loss of generality we may assume that r0  1/4. Recall that for each Q 2 @D

and r 2 (0, r0), Ar(Q) is a point in D \ B(Q, r) satisfying B(Ar(Q),r) ⇢ D \ B(Q, r). Since

GD(z, ·) is regular harmonic in D \ B(z, ") for every " > 0 and vanishes outside D, the following

result follows easily from Theorem 3.1.5.

Theorem 3.2.2. There exists a constant c = c(d, r0,,�) > 1 such that for any Q 2 @D, r 2 (0, r0]

and z, w 2 D \B(Q, 2r), we have

c�1 GD(z,Ar(Q))

GD(w,Ar(Q))


GD(z, x)

GD(w, x)
 c

GD(z,Ar(Q))

GD(w,Ar(Q))
, x 2 D \B

⇣
Q,

r

2

⌘
.

Using the uniform convergence theorem ([8, Theorem 1.2.1]), we can choose r1  r0 such that if

r  r1 then

1

2
 min

1
6�2�1

`((�r)�2)

`(r�2)
 max

1
6�2�1

`((�r)�2)

`(r�2)
 2. (3.2.2)

Fix z0 2 D with r1 < �D(z0) < r1 and let "1 := r1/24. For x, y 2 D, we define r(x, y) :=
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�D(x) _ �D(y) _ |x� y| and

B(x, y) :=

8
>><

>>:

�
A 2 D : �D(A) > 

2 r(x, y), |x�A| _ |y �A| < 5r(x, y)
 

if r(x, y) < "1

{z0} if r(x, y) � "1.

Note that if r(x, y) < "1

1

6
�D(A)  �D(x) _ �D(y) _ |x� y|  2�1�D(A), A 2 B(x, y).

Thus by (3.2.2), if r(x, y) < "1,

1

2


`((�D(A))�2)

`((r(x, y))�2)
 2, A 2 B(x, y).

Let

C1 := C02
d�↵�D(z0)

�d+↵
· sup
�D(z0)/2rdiam(D)

`(r�2)�1

so that, by Proposition 3.2.1(i), GD(·, z0) is bounded from above by C1 on D \ B(z0, �D(z0)/2).

Now we define

g(x) := GD(x, z0) ^ C1.

Note that if �D(z)  6"1, then |z � z0| � �D(z0) � 6"1 � �D(z0)/2 since 6"1 < �D(z0)/4, and

therefore g(z) = GD(z, z0).

The following result is established in [43].

Theorem 3.2.3 ([43, Theorem 1.2]). There exists c = c(diam(D), d, r0,,�) > 0 such that for

every x, y 2 D

c�1 g(x)g(y)

g(A)2|x� y|d�(|x� y|�2)
 GD(x, y)  c

g(x)g(y)

g(A)2|x� y|d�(|x� y|�2)
, A 2 B(x, y).

Lemma 3.2.4. There exist positive constants c = c(d, r0,,�), � = �(d, r0,,�) < ↵ and r2 2

(0, r1] such that for any Q 2 @D, r 2 (0, r2), and nonnegative function u on Rd
which is harmonic
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with respect to X in D \B(Q, r) we have

u(Ar(Q))  c
⇣r
s

⌘
� `(s�2)

`(r�2)
u(As(Q)), s 2 (0, r).

Proof. Without loss of generality, we assume Q = 0. Let ak :=
�


2

�
k
for k = 0, 1, · · · . By using

[41, Proposition 4.10] instead of [40, Proposition 3.8] and repeating the proof of [40, Lemma 5.2],

we easily see that [40, Lemma 5.2] is valid in the present case. Thus there exist positive constants

c = c(d, r0,,�), � = �(d, r0,,�) < ↵, and R1 2 (0, r1] such that for every k = 0, 1, · · · ,

u(Ar(0))  c1

✓
r

akr

◆
� `((akr)�2)

`(r�2)
u(Aakr

(0)), r 2 (0, R1].

Since ` is slowly varying at 1, there exist R2 = R2(d,�, `) 2 (0, R1] and c2 = c2(d,�, `) > 0 such

that

s�

`(s�2)
 c2

r�

`(r�2)
, 8 0 < s < r  R2. (3.2.3)

Thus if r  R2 and ak+1r < s  akr, by (3.2.3) and Theorem 3.1.3,

u(Ar(0))  c3
r�

`(r�2)

`((akr)�2)

(akr)�
u(As(0))  c4

r�

`(r�2)

`(s�2)

s�
u(As(0))

for some positive constants c3, c4 independent of s. ⇤

Applying [41, Lemma 4.19] to Green functions, we have the following.

Lemma 3.2.5 (Carleson’s estimate). There exists c = c(d, r0,,�) > 1 such that for every Q 2 @D,

r 2 (0, 1/4), and y 2 D \B(Q, 4r)

GD(x, y)  cGD(Ar(Q), y), x 2 D \B(Q, r). (3.2.4)

For every x, y 2 D, letQx andQy be points on @D such that �D(x) = |x�Qx| and �D(y) = |y�Qy|

respectively. It is easy to check that if r(x, y) < "1, Ar(x,y)(Qx), Ar(x,y)(Qy) 2 B(x, y). (For

example, see [35, page 123].) Moreover, since g(A1) ⇣ g(A2) for all A1, A2 2 B(x, y) by Theorem
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3.1.3, we have in particular

g(Ar(x,y)(Qx)) ⇣ g(Ar(x,y)(Qy)) ⇣ g(Ax,y) for all Ax,y 2 B(x, y). (3.2.5)

This simple but useful fact will be used later in this section.

Using our Theorem 3.1.3 and Lemma 3.2.5, the proofs of the next four lemmas are the same as

those of [35, Lemmas 3.8–3.11], so we omit the proofs.

Lemma 3.2.6. There exists c = c(diam(D), d, r0,,�) > 0 such that for every x, y 2 D with

r(x, y) < "1,

g(z)  c g(Ar(x,y)(Qx)), z 2 D \B(Qx, r(x, y)). (3.2.6)

Lemma 3.2.7. There exists c = c(diam(D), d, r0,,�) > 0 such that for every x, y 2 D

g(x) _ g(y)  c g(A), A 2 B(x, y).

Lemma 3.2.8. If x, y, z 2 D satisfy r(x, z)  r(y, z), then there exists c = c(diam(D), d, r0,,�) >

0 such that

g(Ax,y)  c g(Ay,z) for every (Ax,y, Ay,z) 2 B(x, y)⇥ B(y, z).

Lemma 3.2.9. There exists c = c(diam(D), d, r0,,�) > 0 such that for every x, y, z, w 2 D and

(Ax,y, Ay,z, Az,w, Ax,w) 2 B(x, y)⇥ B(y, z)⇥ B(z, w)⇥ B(x,w),

g(Ax,w)
2
 c

�
g(Ax,y)

2 + g(Ay,z)
2 + g(Az,w)

2
�
.

Combining Theorem 3.2.3, Lemmas 3.2.7 and 3.2.8, and applying Theorem 3.1.1(i), we have the

following 3G Theorem.

Theorem 3.2.10 (3G theorem). There exists c = c(diam(D), d, r0,,�) > 0 such that for every

x, y, z 2 D

GD(x, y)GD(y, z)

GD(x, z)
 c

G(x, y)G(y, z)

G(x, z)
⇣

�(|x� z|�2)

�(|x� y|�2)�(|y � z|�2)

|x� z|d

|x� y|d|y � z|d
.
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In the remainder of this thesis, � will always stand for the constant from Lemma 3.2.4.

Lemma 3.2.11. There exists c = c(diam(D), d, r0,,�) > 0 such that for every x, y 2 D with

r(x, y) < "1,

g(Ax,y) � c
r(x, y)�

`((r(x, y))�2)
, for all Ax,y 2 B(x, y).

Proof. Let A := Ar(x,y)(Qx). Note that g(·) = GD(·, z0) is harmonic in D \ B(Qx, 2"1). Since

r(x, y) < "1, by Lemma 3.2.4 (recall "1 = r1/24),

g(A) = GD(A, z0) � c

✓
r(x, y)

2"1

◆
� `((2"1)�2

`((r(x, y))�2)
GD(A2"1(Qx), z0).

Note that �D(z0) � r1 = 24"1 and �D(A2"1(Qx)) > 2"1. Thus by Proposition 3.2.1(ii) we have

GD(A2"1(Qx), z0) > c1 > 0. This completes the proof of (3.2.5). ⇤

Lemma 3.2.12. There exists c = c(diam(D), d, r0,,�) > 0 such that for every x, y, z 2 D and

(Ax,y, Ay,z) 2 B(x, y)⇥ B(y, z)

g(Ay,z)

g(Ax,y)
 c

✓
r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
_ 1

◆
.

Proof. Note that if r(x, y) � "1, g(Ay,z)  C1 = g(Ax,y). We will consider three cases separately:

(a) r(x, y) < "1 and r(y, z) � "1: By Lemma 3.2.11, we have

g(Ay,z)

g(Ar(x,y)(Qy))
 cC1

`((r(x, y))�2)

r(x, y)�
 cC1"

��

1

 
sup

"1sdiam(D)
`(s�2)

!
r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
.

(b) r(y, z)  r(x, y) < "1: Then Ar(y,z)(Qy) 2 D \ B(Qy, r(x, y)). Thus by Lemma 3.2.5 we have

g(Ar(y,z)(Qy))  cg(Ar(x,y)(Qy)).

(c) r(x, y) < r(y, z) < "1: By Lemma 3.2.4,

g(Ar(y,z)(Qy))

g(Ar(x,y)(Qy))
 c

r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
.

Now the conclusion of the lemma follows immediately from (3.2.5). ⇤

Thus, by Lemmas 3.2.7 and 3.2.12, we get the following lemma.
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Lemma 3.2.13. There exists a constant c = c(diam(D), d, r0,,�) > 0 such that for every

x, y, z, w 2 D and (Ax,y, Az,w, Ax,w) 2 B(x, y)⇥ B(z, w)⇥ B(x,w),

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2
 c

✓
r(x,w)�

r(x, y)�
`((r(x, y))�2)

`((r(x,w))�2)
_ 1

◆✓
r(x,w)�

r(z, w)�
`((r(z, w))�2)

`((r(x,w))�2)
_ 1

◆
.

Lemma 3.2.14. There exists a constant c = c(diam(D), d, r0,,�) > 0 such that for every

x, y, z, w 2 D and (Ax,y, Az,w, Ax,w) 2 B(x, y)⇥ B(z, w)⇥ B(x,w),

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2
 c

✓
r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
_ 1

◆✓
r(y, z)�

r(z, w)�
`((r(z, w))�2)

`((r(y, z))�2)
_ 1

◆
.

Proof. From Lemma 3.2.9, we get

g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2
 c1

g(y)g(z)

g(Ax,y)2g(Az,w)2
(g(Ax,y)

2 + g(Ay,z)
2 + g(Az,w)

2)

= c1

✓
g(y)g(z)

g(Az,w)2
+

g(y)g(z)

g(Ax,y)2
+

g(y)g(z)g(Ay,z)2

g(Ax,y)2g(Az,w)2

◆
.

By applying Lemma 3.2.7 to both y and z, we have that (3.2.7) is less than or equal to

c2
g(y)

g(Az,w)
+ c2

g(z)

g(Ax,y)
+ c3

✓
g(Ay,z)

g(Ax,y)

◆✓
g(Ay,z)

g(Az,w)

◆

 c2
g(y)

g(Az,w)
+ c2

g(z)

g(Ax,y)
+ c4

✓
r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
_ 1

◆✓
r(y, z)�

r(z, w)�
`((r(z, w))�2)

`((r(y, z))�2)
_ 1

◆
,

where we used Lemma 3.2.12. Moreover, by Lemmas 3.2.7 and 3.2.12,

g(y)

g(Az,w)
=

✓
g(y)

g(Ay,z)

◆✓
g(Ay,z)

g(Az,w)

◆
 c

✓
r(y, z)�

r(z, w)�
`((r(z, w))�2)

`((r(y, z))�2)
_ 1

◆

and

g(z)

g(Ax,y)
=

✓
g(z)

g(Ay,z)

◆✓
g(Ay,z)

g(Ax,y)

◆
 c

✓
r(y, z)�

r(x, y)�
`((r(x, y))�2)

`((r(y, z))�2)
_ 1

◆
.

Combining these, (3.2.7) and the inequality (a
b
_1)+(a

c
_1)  2(a

b
_1)(a

c
_1), valid for all a, b, c > 0,

we have finished the proof. ⇤

Lemma 3.2.15. Let  (r) = r
�

`(r�2) and M 2 (0,1). Then there exists a constant c = c(M, `,�) > 0

20



such that

 (a2)

 (b2)
 c

✓
 (a1)

 (b1)
_ 1

◆
for every 0 < a1  a2  2a1  M and 0 < b1  b2  M.

Proof. Since ` is slowly varying at 1, by [8, Theorem 1.5.3] there exists R1 < M/2 such that

s�

`(s�2)
 2

r�

`(r�2)
and

`(r�2)

`((2r)�2)
 2 8s < r  R1. (3.2.7)

Note that  : (0,1) ! (0,1) is locally bounded from above and below by positive constants.

If a1  R1/2, since a2 < 2a1  R1, by (3.2.7),  (a2)  2�+2 (a1). If a1 > R1/2, by the local

boundedness of  ,  (a2) ⇣  (a1).

Similarly, if b2  R1, since b1  b2  R1, by (3.2.7), 2 (b2) �  (b1). If b2 > R1, by the local

boundedness of  and (3.2.7), there exists a c1 such that  (b2) � c1 (b1). The lemma clearly

follows from these observations. ⇤

Now we are ready to prove the main result of this section, which is a generalization of the main

result in [35].

Theorem 3.2.16 (Generalized 3G theorem). Let  (r) := r
�

`(r�2) . Suppose that D is a bounded -fat

open set with characteristics (r0,). Then there exists a positive constant c = c(diam(D), d, r0,,�)

such that for every x, y, z, w 2 D

GD(x, y)GD(z, w)

GD(x,w)
 c

✓
 (|x� w|) ^  (|y � z|)

 (|x� y|)
_ 1

◆✓
 (|x� w|) ^  (|y � z|)

 (|z � w|)
_ 1

◆
G(x, y)G(z, w)

G(x,w)
.

(3.2.8)

Proof. Let

G(x, y, z, w) :=
GD(x, y)GD(z, w)

GD(x,w)
and H(x, y, z, w) :=

G(x, y)G(z, w)

G(x,w)
.

If |x � w|  �D(x) ^ �D(w), by Proposition 3.2.1(ii) and Theorem 3.1.1(i), GD(x,w) � cG(x,w).

Thus by (3.2.1) and Theorem 3.1.1(i) we have G(x, y, z, w)  cH(x, y, z, w).

On the other hand, if |y � z|  �D(y) ^ �D(z), then by Proposition 3.2.1(ii) and Theorem
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3.1.1(i), GD(y, z) � cG(y, z). Using this and Theorem 3.2.10, we have that there exists a constant

c = c(diam(D), d, r0,,�) > 0 such that

G(x, y, z, w) =
GD(x, y)GD(y, z)

GD(x, z)

GD(x, z)GD(z, w)

GD(x,w)

1

GD(y, z)

 c
G(x, y)G(y, z)

G(x, z)

G(x, z)G(z, w)

G(x,w)

1

G(y, z)
= cH(x, y, z, w).

Now we assume that |x�w| > �D(x)^�D(w) and |y�z| > �D(y)^�D(z). Since �D(x)_�D(w) 

�D(x)^�D(w)+ |x�w|, using the assumption �D(x)^�D(w) < |x�w|, we obtain r(x,w) < 2|x�w|.

Similarly, r(y, z) < 2|y � z|. Let Ax,w 2 B(x,w), Ax,y 2 B(x, y) and Az,w 2 B(z, w). Applying

Lemmas 3.2.13 and 3.2.14 to Theorem 3.2.3, we have

G(x, y, z, w)  c
g(y)g(z)g(Ax,w)2

g(Ax,y)2g(Az,w)2
H(x, y, z, w)

 c

✓
 (r(x,w))

 (r(x, y))
^
 (r(y, z))

 (r(x, y))

◆
_ 1

� ✓
 (r(x,w))

 (r(z, w))
^
 (r(y, z))

 (r(z, w))

◆
_ 1

�
H(x, y, z, w).

Now applying Lemma 3.2.15, we arrive at the conclusion of the theorem. ⇤

3.3 Feynman-Kac Perturbations

Throughout this section D is a bounded -fat open set. In this section, we will first recall the

Kato classes introduced in [15, 24, 25]. Then we apply the 3G theorem and generalized 3G theorem

to establish some concrete su�cient conditions for these classes. Note that XD is an irreducible

transient symmetric Hunt process satisfying the assumption at the beginning of [15, Section 3.2].

Definition 3.3.1. A function q is said to be in the class S1(XD) if for any " > 0 there are a

Borel subset K = K(") of finite Lebesgue measure and a constant � = �(") > 0 such that

sup
(x,z)2(D⇥D)\{x=z}

Z

D\K

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy  "
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and that, for all measurable set B ⇢ K with |B| < �,

sup
(x,z)2(D⇥D)\{x=z}

Z

B

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy  ".

Definition 3.3.2. Suppose F is a bounded function on D ⇥D vanishing on the diagonal. Let

q|F |(x) :=

Z

D

|F (x, y)|J(x, y)dy.

(1) F is said to be in the class A1(XD) if for any " > 0 there are a Borel subset K = K(") of

finite Lebesgue measure and a constant � = �(") > 0 such that

sup
(x,w)2(D⇥D)\{x=w}

Z

(D⇥D)\(K⇥K)

GD(x, y)GD(z, w)

GD(x,w)
|F (y, z)|J(y, z)dzdy  "

and that, for all measurable sets B ⇢ K with |B| < �,

sup
(x,w)2(D⇥D)\{x=w}

Z

(B⇥D)[(D⇥B)

GD(x, y)GD(z, w)

GD(x,w)
|F (y, z)|J(y, z)dzdy  ".

(2) F is said to be in the class A2(XD) if F 2 A1(XD) and if the function q|F | is in S1(XD).

Now we are going to use the 3G theorem and generalized 3G theorem to give some concrete

su�cient conditions for S1(XD) and A2(XD). First we prove the following simple lemma.

Lemma 3.3.3. There exists a positive constant c = c(↵, d, `) such that

`(|x� z|�2)|x� z|d�↵
 c

⇣
`(|x� y|�2)|x� y|d�↵ + `(|y � z|�2)|y � z|d�↵

⌘
.

Proof. By symmetry, without loss of generality, we assume |x � y|  |y � z|. Since ` is slowly

varying at 1, by [8, Theorem 1.5.3] there exists R1 > 0 such that

sd�↵`(s�2)  2 rd�↵`(r�2) and `((2r)�2)  2 `(r�2) 8s < r  R1. (3.3.1)

From (3.3.1), we see that

`(|x� z|�2)|x� z|d�↵ < c1.
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If |y � z|  R1, then |x� z|  |x� y|+ |y � z|  2|y � z|  2R1. Thus by (3.3.1),

`(|x� z|�2)|x� z|d�↵
 21+d�↵`((2|y � z|)�2)|y � z|d�↵

 22+d�↵`(|y � z|�2)|y � z|d�↵.

If |y � z| > R1, by the local boundedness of ` and (3.3.1), we have

`(|x� z|�2)|x� z|d�↵ < c1 < c2`(|y � z|�2)|y � z|d�↵.

⇤

Theorem 3.3.4. A function q on D is in S1(XD) if

lim
r#0

sup
x2D

Z

|x�y|r

|q(y)|dy

|x� y|d�(|x� y|�2)
= 0. (3.3.2)

Proof. Without loss of generality, we assume that q is a positive function on D. It follows from

Theorem 3.2.10, (H1), Lemma 3.3.3, and the assumption on ` that for every x, y, z 2 D we have

GD(x, y)GD(y, z)

GD(x, z)
 c1

�(|x� z|�2)

�(|x� y|�2)�(|y � z|�2)

|x� z|d

|x� y|d|y � z|d

 c2

✓
1

�(|x� y|�2)|x� y|d
+

1

�(|y � z|�2)|y � z|d

◆
. (3.3.3)

We claim that a positive function q satisfying (3.3.2) is integrable on D. Let

M(r) := sup
w2D

Z

|w�y|r

q(y)dy

|w � y|d�(|w � y|�2)
.

By (H1) and [8, Theorem 1.5.3], there exists s0 > 0 such that

ud�(u�2)  2sd�(s�2), u  s  s0. (3.3.4)

Then, using (3.3.2), we can choose s1  s0 such that M(s1) < 1. Now by (3.3.4),

sup
x2D

Z

|x�y|s1

q(y)dy  sup
x2D

Z

|x�y|s1

2sd1�(s
�2
1 )q(y)dy

|x� y|d�(|x� y|�2)
 2sd1�(s

�2
1 )M(s1) < 1,
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which implies that q is integrable on D.

By (3.3.3), we have for every Borel subset A of D and every (x, z) 2 D ⇥D,

Z

A

GD(x, y)GD(y, z)

GD(x, z)
q(y)dy  2 c2M(r) + 2 c2 sup

w2D

Z

A\B(w,r)c

q(y)dy

�(|w � y|�2)|w � y|d

 2 c2M(r) +

Z

A

q(y)dy

 
sup

s2[r,diam(D)]

2c2
�(s�2)sd

!
=: 2 c2M(r) +

✓Z

A

q(y)dy

◆
a(r).

Given ", choose r1 = r1(") 2 (0, diam(D)) such that 2 c2M(r1) < "/2 and let � := 2�1"/a(r1).

This completes the proof of the theorem. ⇤

The proof of the following theorem is similar to that of [35, Theorem 4.3].

Theorem 3.3.5. If D is a bounded -fat open set with characteristics (r0,) and F is a function

on D ⇥D with

|F (x, y)|  c1
|x� y|✏

�(|x� y|�2)
(3.3.5)

for some ✏ > 0 and c1 > 0, then F 2 A2(XD) and

Z

D

Z

D

GD(x, y)GD(z, w)

GD(x,w)
|F (y, z)|J(y, z)dydz  c2|x� w|↵+✏�(|x� w|�2) (3.3.6)

for some c2 > 0.

Proof. We assume, without loss of generality, " < d�↵. By the generalized 3G theorem (Theorem

3.2.16), there exists a positive constant c = c(diam(D), d, r0,,�) such that

GD(x, y)GD(z, w)

GD(x,w)

 c1

✓
`(|x� w|�2)

`(|x� y|�2)`(|z � w|�2)

|x� w|d�↵

|x� y|d�↵|z � w|d�↵
+

|x� w|d�↵+�

|x� y|d�↵+� |z � w|d�↵`(|z � w|�2)

+
|x� w|d�↵+�

|x� y|d�↵|z � w|d�↵+�`(|x� y|�2)
+

|x� w|d�↵+2�

|x� y|d�↵+� |z � w|d�↵+�`(|x� w|�2)

◆
.

Thus, by Theorem 3.1.1(ii) and (3.3.5), we have

GD(x, y)GD(z, w)

GD(x,w)
|F (y, z)|J(y, z)  c2

4X

i=1

Ai(x, y, z, w)
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where

A1(x, y, z, w) :=
`(|x� w|�2)

`(|x� y|�2)`(|z � w|�2)

|x� w|d�↵

|x� y|d�↵|z � w|d�↵|y � z|d�✏
,

A2(x, y, z, w) :=
|x� w|d�↵+�`(|z � w|�2)�1

|x� y|d�↵+� |z � w|d�↵|y � z|d�✏
,

A3(x, y, z, w) :=
|x� w|d�↵+�`(|x� y|�2)�1

|z � w|d�↵+� |x� y|d�↵|y � z|d�✏
,

A4(x, y, z, w) :=
|x� w|d�↵+2�`(|x� w|�2)�1

|x� y|d�↵+� |z � w|d�↵+� |y � z|d�✏
.

First let

c3 := sup
(ex,ey)2D⇥D

|ex� ey|↵/2

`(|ex� ey|�2)
< 1.

Then we have

Z

D

Z

D

A1(x, y, z, w)dydz

=

Z

D

Z

D

`(|x� w|�2)

`(|x� y|�2)`(|z � w|�2)

|x� w|d�↵

|x� y|d�↵|z � w|d�↵|y � z|d�✏
dydz

 c23|x� w|d�↵`(|x� w|�2)

Z

D

Z

D

|x� y|�d+↵

2 |z � w|�d+↵

2 |y � z|�d+✏dydz

 c23|x� w|✏`(|x� w|�2)  c4|x� w|↵+✏�(|x� w|�2).

The second to last inequality comes from [32, Lemma 3.12], and the last follows from (H1). Similar

techniques can be applied to the case A2, A3, A4 and this proves (3.3.6).

Now using Lemma 3.3.3, we have

A1(x, y, z, w) 
1

`(|z � w|�2)|z � w|d�↵

1

|y � z|d�✏
+

1

`(|x� y|�2)|x� y|d�↵

1

|y � z|d�✏

+
1

`(|x� y|�2)|x� y|d�↵

1

`(|z � w|�2)|z � w|d�↵

1

|y � z|↵�✏
.

Since " > 0 and ` is slowly varying at 1, the following two families

{(y, z) 7! `(|x� y|�2)�1
|x� y|↵�d

|y � z|✏�d, x 2 D},

{(y, z) 7! `(|z � w|�2)�1
|z � w|↵�d

|y � z|✏�d, w 2 D}
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are uniformly integrable over cylindrical sets of the form B⇥D and D⇥B, for any Borel set B ⇢ D.

Now let us show that the following family of functions are uniformly integrable over cylindrical sets

of the form B ⇥D and D ⇥B:

⇢
(y, z) 7!

1

`(|x� y|�2)|x� y|d�↵`(|z � w|�2)|z � w|d�↵|y � z|↵�✏
, x, w 2 D

�
. (3.3.7)

Let us consider the family (3.3.7) when the exponent of |y � z| is negative, i.e., ✏ < ↵. Otherwise

the family (3.3.7) is uniformly integrable since |y � z|✏�↵ < c.

Applying Young’s inequality, we obtain

1

`(|x� y|�2)|x� y|d�↵`(|z � w|�2)|y � z|↵�✏|z � w|d�↵

=

✓
1

`(|x� y|�2)|x� y|d�↵`(|z � w|�2)|z � w|d�↵

◆✓
1

|y � z|↵�✏

◆


1

p

✓
1

(`(|x� y|�2))p|x� y|(d�↵)p(`(|z � w|�2))p|z � w|(d�↵)p

◆
+

1

q

✓
1

|y � z|(↵�✏)q

◆
.

Since ` is slowly varying at 1, it su�ces to find p, q > 1 satisfying 1
p
+ 1

q
= 1 and (d � ↵)p <

d, (↵� ✏)q < d. By choosing p in the interval

✓✓
1 _

d

d� ↵+ ✏

◆
,

d

d� ↵

◆
,

we get that the family (3.3.7) is uniformly integrable. Note that this interval is not empty since

d

d� ↵+ ✏
<

d

d� ↵
by (↵ + ✏) ^ d > ↵ and

d

d� ↵
> 1. Similar techniques can be applied to the

case A2, A3, A4 and this proves F 2 A1(XD). (See [35, page 131–132].) Since

q|F |(dx) =

Z

D

|F (x, y)|J(x, y)dy 

Z

D

c |x� y|✏�ddy  c,

it follows from Theorem 3.3.4 that q|F | 2 S1(XD) and therefore F is in A2(XD). ⇤

For w 2 D, we denote by Ew
x the expectation for the conditional process obtained from XD

through Doob’s h-transform with h(·) = GD(·, w) starting from x 2 D. For q 2 S1(XD) and
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F 2 A2(XD), we define

eq+F (t) := exp

0

@
Z

t

0
q(XD

s )ds+
X

0<st

F (XD

s�, X
D

s )

1

A .

It gives rise to a Schrödinger semigroup

Qtf(x) := Ex

⇥
eq+F (t)f(X

D

t )
⇤
.

When x 7! Ex [eq+F (⌧D)] is bounded, it follows from [15, Theorem 3.9] that the Green function for

the Schrödinger semigroup {Qt, t � 0} is

VD(x, y) = Ey

x [eq+F (⌧D)]GD(x, y), (3.3.8)

that is, Z

D

VD(x, y)f(y) dy =

Z 1

0
Qtf(x) dt = Ex

Z 1

0
eq+F (t)f(X

D

t ) dt

�

for any Borel measurable function f � 0 on D.

Let u(x, y) := Ey
x [eq+F (⌧D)] for y 2 D. Applying [15, Theorems 3.10] and [16, Theorems 3.4 and

Section 6] (see also [24]) to our case, we get

Theorem 3.3.6. Let q 2 S1(XD) and F 2 A1(XD) be such that the gauge function x 7!

Ex [eq+F (⌧D)] is bounded. The following properties hold.

(1) The conditional gauge function u(x, y) is continuous on (D ⇥D) \ {(x, x) : x 2 D}, hence by

(3.3.8) so is VD(x, y).

(2) There exists a positive constant c = c(�, D) such that

c�1GD(x, y)  VD(x, y)  cGD(x, y), x, y 2 D.
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3.4 Green Function Estimate for Perturbations of Subordinate

Brownian Motions

In this section, we consider Green function estimates for perturbations of subordinate Brownian

motions. Throughout this section, Y is a symmetric Lévy process with a Lévy density JY (x) :=

J(x) + �(x) and we assume that there exist some constants c > 0, ⇢ 2 (0, d) such that

|�(x)|  cmax{|x|�d+⇢, 1} for x 2 Rd. (3.4.1)

Since |�(x)|  JY (x) + J(x), clearly (3.4.1) implies that � is integrable in Rd. One particular

example of Y is obtained with JY (x) = J(x)1B(0,1)(x).

First we show that the transition density of Y is in C1
b
(Rd), where C1

b
(Rd) is the set of smooth

and bounded functions on Rd.

Lemma 3.4.1. The process Y has a transition density pY (t, x, y) = pY (t, y � x) such that x !

pY (t, x) is in C1
b
(Rd) for each t > 0.

Proof. The Lévy exponent of Y is given by

 Y (⇠) =  (⇠) +

Z

Rd\{0}
(1� cos(⇠, x))�(x)dx.

Since
��
Z

Rd\{0}
(1� cos(⇠, x))�(x)dx

��  2|�|L1(Rd), (3.4.2)

we have
R
| exp(�t Y (⇠))||⇠|nd⇠ < 1 for every n 2 N [ {0} and t > 0. Note that for t > 0

pY (t, x) = (2⇡)�d

Z

Rd

e�i⇠·xe�t Y (⇠)d⇠  (2⇡)�d

Z

Rd

e�t Y (⇠)d⇠ = pY (t, 0) < 1.

Now the assertion of the lemma follows immediately. ⇤

For any open set U , we will use ⌧Y
U

to denote the first time Y exits U , i.e., ⌧Y
U

= inf{t > 0 :

Yt /2 U}. The killed process of Y in U is denoted by Y U . It follows easily from [50, Lemma 48.3]

that for any bounded open subset U , there exists t1 > 0 such that supx2Rd Px(Yt1 2 U) < 1. Put
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✓ := supx2Rd Px(⌧YU > t1)  supx2Rd Px(Yt1 2 U) < 1. Then by the Markov property and an

induction argument,

sup
x2Rd

Px(⌧
Y

U > nt1)  ✓n.

Thus

sup
x2U

Ex[⌧
Y

U ] 
t1

1� ✓
< 1. (3.4.3)

Now we state some auxiliary properties of pX(t, x). We need these properties only when we prove

the (killed) heat kernel pY
D
(t, x) is continuous and it will not be needed in the rest of the thesis.

Lemma 3.4.2. There exist constants c > 0 and ⇣ > 0 such that pX(t, x)  ct�⇣
for every t 2 (0, 1].

Proof. The heat kernel pX(t, x) can be expressed in terms of Fourier transforms by pX(t, x) =

(2⇡)�d
R
e�i⇠·xe�t (⇠)d⇠. Since ` is slowly varying at 1 there is a constant c1 such that |⇠|↵`(|⇠|2) �

c1|⇠|↵/2 for |⇠| � 1. From this it follows that for t 2 (0, 1]

pX(t, x)  pX(t, 0) = (2⇡)�d

Z

Rd

e�t (⇠)d⇠  (2⇡)�d

Z

|⇠|<1
1d⇠ + (2⇡)�d

Z

|⇠|�1
e�tc1|⇠|

↵

2 d⇠

 (2⇡)�d
⇡d/2

�(d2 + 1)
+ c2t

� 2d
↵  c3t

� 2d
↵ .

⇤

Lemma 3.4.3. For every � > 0 there exists a constant c = c(�) such that for every |x| � � and

t > 0

pX(t, x)  c(�), (3.4.4)

|�(x) +
�
pX(t, ·) ⇤ �

�
(x)|  c(�).

Proof. The heat kernel pX(t, x) can also be written as pX(t, x) =

Z 1

0
(4⇡s)�

d

2 e�
|x|2
4s P(St 2 ds)

and thus pX(t, x) < c1(�) for all |x| � � and t > 0. Next since � is integrable on Rd and uniformly
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bounded away from 0, it follows from (3.4.4) that for |x| � � and t > 0

pX(t, ·) ⇤ �(x) =

Z
pX(t, x� y)�(y)dy

=

Z

|x�y|��/2
pX(t, x� y)�(y)dy +

Z

|x�y|<�/2
pX(t, x� y)�(y)dy

 c1(�)k�kL1(Rd) + k�kL1(B(0,�/2)c)

Z

|x�y|<�/2
pX(t, x� y)dy  c2(�) < 1.

⇤

In the remainder of this section ⇣ will stand for the constant in Lemma 3.4.2. Using Lemmas

3.4.2 and 3.4.3, the proof of the next lemma is the same as that of [32, Lemma 2.6], so we omit the

proof.

Lemma 3.4.4. For every � there exists a constant c = c(�, ⇣) > 0 such that pY (t, x)  c for

|x| � (1 _ [⇣])� and t > 0.

Now we prove that pY
D
(t, ·, ·) is jointly continuous for any bounded open set D.

Lemma 3.4.5. For any bounded open set D, pY
D
(t, ·, ·) is jointly continuous on D ⇥D.

Proof. By Lemmas 3.4.2, 3.4.3, and 3.4.4, we have for every T, L > 0

sup
|x�y|�L,0<tT

pY (t, x, y) < 1. (3.4.5)

By the strong Markov property and the continuity of pY (t, ·, ·), the transition density pY
D
(t, x, y) of

Y D for any open set D can be written as

pYD(t, x, y) := pY (t, x, y)� Ex[ p
Y (t� ⌧YD , Y

⌧
Y

D

, y) : ⌧YD  t] for t > 0, x, y 2 Rd. (3.4.6)

Now using (3.4.5) and (3.4.6) and following the routine argument (see [27]), one can show that for

any open set D, pY
D
(t, ·, ·) is jointly continuous in D ⇥D. ⇤

In the remainder of this section we will show that, for any bounded -fat open domain D, GY

D

is comparable to GD, the Green function of XD. We will accomplish this by first dealing with the

case � is positive, then the general case.
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3.4.1 Positive � Case

Assume Z is a symmetric Lévy process with a Lévy density JZ(x) := J(x)+e�(x) and we assume

that there exist some constants c > 0, ⇢ 2 (0, d) such that

0  e�(x)  cmax{|x|�d+⇢, 1} for x 2 Rd. (3.4.7)

The Dirichlet form (E ,F) of X is given by

E(u, v) =
1

2

Z

Rd

Z

Rd

(u(x)� u(y))(v(x)� v(y))J(x, y)dxdy,

F = {u 2 L2(Rd) : E(u, u) < 1}.

Another expression for E is given by

E(u, v) =

Z

Rd

û(⇠)¯̂v(⇠) (⇠)d⇠,

where û is the Fourier transform of u. The Dirichlet form (EZ ,FZ) of Z is given by

E
Z(u, v) =

1

2

Z

Rd

Z

Rd

(u(x)� u(y))(v(x)� v(y))JZ(x, y)dxdy,

F
Z = {u 2 L2(Rd) : EZ(u, u) < 1}.

Another expression for EZ is given by

E
Z(u, v) =

Z

Rd

û(⇠)¯̂v(⇠) Z(⇠)d⇠

where  Z(⇠) =  (⇠) +
R
Rd\{0}(1 � cos(⇠, x))e�(dx). It follows from (3.4.2) that there exists c > 0

such that

c�1
E1(u, u)  E

Z

1 (u, u)  cE1(u, u).

Therefore we know that FZ = F and that a set is of zero capacity for X if and only if it is of zero

capacity for Z.

In the remainder of this subsection, we always assume that D is a bounded -fat set. The
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Dirichlet forms of XD and ZD are given by (E ,FD) and (EZ ,FZ

D
) respectively, where

FD = F
Z

D = {u 2 F|u = 0 on Dc except for a set of zero capacity}.

For u, v 2 FD, we have

E(u, v) =
1

2

Z

D

Z

D

(u(x)� u(y))(v(x)� v(y))J(y � x)dxdy +

Z

D

u(x)v(x)D(x)dx,

E
Z(u, v) =

1

2

Z

D

Z

D

(u(x)� u(y))(v(x)� v(y))JZ(y � x)dxdy +

Z

D

u(x)v(x)ZD(x)dx,

where D(x) =
R
Dc J(y � x)dy and Z

D
(x) =

R
Dc JZ(y � x)dy = X

D
(x) +

R
Dc e�(y � x)dy. Define

F (x, y) := J
Z(y�x)
J(y�x) � 1 = e�(y�x)

J(y�x) and q(x) := D(x) � Z
D
(x). Note that inf

x,y2D
F (x, y) � 0. Now

define

Kt = exp(
X

0<st

ln(1 + F (XD

s�, X
D

s ))�

Z
t

0

Z

D

F (XD

s , y)J(y �XD

s )dyds+

Z
t

0
q(XD

s )ds)

and

Qtf(x) := Ex[Ktf(X
D

t )], x 2 D.

By calculating the quadratic form of Qt using techniques similar to those on [26, p. 275], one

can see that Qt is the semigroup associated with the Dirichlet form (EZ ,FZ

D
).

By using Theorem 3.1.1 and the assumption on e�, it is easy to see there exist ✏ > 0 and c0 > 0 such

that F (x, y)  c0 |x�y|✏
�(|x�y|�2) for all x, y 2 D. (For example, we can take ✏ = ⇢

2 .) Thus, by Theorem

3.3.5, the function F (x, y) 2 A2(XD). Since |q(x)| = | �
R
Dc �(y � x)dy| 

R
Rd �(z)dz < 1, we

know that q 2 S1(XD) by Theorem 3.3.4.

Note that the killing intensity Z
D

of ZD is bounded from below by a positive constant so it

follows that

inf{EZ(u, u) : u 2 F
Z

D with

Z

D

u(x)2dx = 1} > 0.

This implies that

Z 1

0
Qtdt is a bounded operator in L2(D, dx) and so for any Borel subset B ⇢ D,

Z 1

0
Qt1B(x)dt = Ex[

Z 1

0
Kt1B(X

D

t )dt] < 1, for all x 2 D. (3.4.8)
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It follows from (3.4.3) and [31, Proposition 2.2 (ii)] that the Green function GZ

D
(·, ·) of ZD exists

and strictly positive on D⇥D for any bounded open set D. Moreover, since Z satisfies the condition

(A1) in [39], it follows from [31, Proposition 2.1], [39, Theorem 3.11] and our Lemmas 3.4.2 and 3.4.5

that the semigroup of ZD is intrinsically ultracontractive, that is there exits a constant c1 = c1(D, t)

such that pZ
D
(t, x, y)  c1�1(x)�1(y), where �1 is the eigenfunction of semigroup of ZD associated

with the largest eigenvalue �1 < 0 of the generator of ZD and k�1kL2(D) = 1. Furthermore it

follows from [39, Theorem 3.13] there is a constant c2 > 0 such that pZ
D
(t, x, y)  c2e�1t�1(x)�1(y)

for all t > 1. Hence by Lemma 3.4.4, the dominated convergence theorem and the continuity of

pZ
D
(t, ·, ·), GZ

D
(·, ·) is continuous on (D ⇥ D) \ {x = y}. Now, from (3.4.8), Theorems 3.3.4 and

3.3.5, we know that the assumptions of Theorem 3.3.6 are satisfied. Since the Green function of

the semigroup Qt is GZ

D
(x, y) = GD(x, y)Ey

x[K⌧D
], the following result is an immediate consequence

of Theorem 3.3.6.

Theorem 3.4.6. If Z is a purely discontinuous symmetric Lévy process with Lévy density JZ(x) =

J(x) + e�(x) satisfying (3.4.7) and D be a bounded -fat open set in Rd
. Then the Green function

GZ

D
(x, y) for Z in D is continuous on (D ⇥ D) \ {(x, x) : x 2 D}. Moreover, there is a constant

c = c(D, d,�) > 0 such that

c�1GD(x, y)  GZ

D(x, y)  cGD(x, y), x, y 2 D.

3.4.2 General Case

Now we return to the general case where � can take both signs. From now on we assume D

is a bounded -fat domain (connected open set). Let Z be the Lévy process with a Lévy density

JZ(x) := JY (x) _ J(x). Then e�(x) := JZ(x) � J(x) satisfies (3.4.7). By Lemma 3.4.5, pY
D
(t, ·, ·)

and pZ
D
(t, ·, ·) are jointly continuous on D ⇥ D. Note that [39, Condition (A1)(b)] is true for all

three processes X, Y and Z. Since D is a domain, by following the argument in the proof of [31,

Proposition 2.2], one can show that pX
D
(t, ·, ·), pY

D
(t, ·, ·) and pZ

D
(t, ·, ·) are strictly positive for all

t > 0. Thus [32, Property A] is valid. (Also see [39, Corollary 3.12].) Using an argument similar

to the one in the paragraph before Theorem 3.4.6, we see that GY

D
(·, ·) and GZ

D
(·, ·) are strictly

positive and jointly continuous on D ⇥ D. Now it follows from [32, Theorem 3.1] and the joint

34



continuity of GY

D
(x, y) that for every bounded -fat domain D

GY

D(x, y)  c1G
Z

D(x, y)  c2GD(x, y), (3.4.9)

for some constants c1 = c1(d,D,�) and c2 = c2(d,D,�).

In the remainder of this subsection we will show that GY

D
(x, y) � c3GD(x, y) for some c3 > 0.

We will follow the argument in [32] closely.

By [32, Lemma 2.4], for any bounded open set D, Ex[⌧ZD ] ⇣ Ex[⌧YD ] and Ex[⌧ZD ] ⇣ Ex[⌧D]. Thus

Lemma 3.4.7. For any bounded open set D, we have Ex[⌧D] ⇣ Ex[⌧YD ].

The following result is similar to [34, Lemma 17]. Recall that the function g is defined in Section

3.2.

Lemma 3.4.8. Let D be a bounded -fat domain. Then

g(x) ⇣ Ex[⌧D].

Proof. Pick a point z 2 Dc such that �D(z) = diam(D) + 1 and let B := B(z, 1). Con-

sider the function f(x) := Px(X⌧D
2 B). By the Lévy system of X, we know that f(x) =

R
B

R
D
GD(x, y)J(z � y)dydz. For y 2 D, z 2 B, diam(D) < |y � z| < 2diam(D) + 2, so by mono-

tonicity of j, j(2diam(D) + 2)|B| · Ex[⌧D]  f(x)  j(diam(D))|B| · Ex[⌧D]. Since g(x) is equal to

GD(x, z0) on |x� z0| >
�D(z0)

2 , the assertion of this lemma now follows from Theorem 3.1.5. ⇤

Lemma 3.4.9. Let D be a bounded -fat domain and ✓ > 0 a constant. If x, y 2 D satisfy

|x� y| � ✓, then there is a constant c = c(✓,�, D, d) such that GD(x, y)  cEx[⌧D]Ey[⌧D].

Proof. The proof of this lemma is similar to that of [32, Corollary 3.11]. By Theorem 3.2.3, we

have

GD(x, y)  c1
g(x)g(y)

g(A)2|x� y|d�(|x� y|�2)
,

where A 2 B(x, y). Since �D(A) � 

2 r(x, y) �


2 |x� y| � ✓

2 , it follows from [41, Lemma 4.2] that

g(A) ⇣ EA[⌧D] � EA[⌧B(A,
✓

2 )] � c2
1

�((✓4 )�2)
.
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Now the theorem follows from Lemma 3.4.8. ⇤

Recall that Y also satisfies [32, Property A] for the bounded -fat domain D, i.e.,

cEx[⌧
Y

D ]Ey[⌧
Y

D ]  GY

D(x, y). (3.4.10)

The following result says that the Green functions GD(x, y) and GY

D
(x, y) are comparable when

the distance between x and y is not too small.

Theorem 3.4.10. Let D be a bounded -fat domain and ✓ > 0 a constant. If x, y 2 D satisfy

|x� y| � ✓, there is a constant c = c(✓,�, D, d) such that GD(x, y)  cGY

D
(x, y).

Proof. It follows from (3.4.10), Lemmas 3.4.9 and 3.4.7 that

GD(x, y)  c1Ex[⌧D]Ey[⌧D]  c2Ex[⌧
Y

D ]Ey[⌧
Y

D ]  c3G
Y

D(x, y).

⇤

Now we are going to prove that GD(x, y)  cGY

D
(x, y) for some c = c(d,D,�) > 0 when x and y

are close to each other. The next lemma is adapted from [32, Lemma 3,5 and Corollary 3.6] which

use the proofs of [49, Lemmas 7 and 9]. In fact, the proofs of [49, Lemmas 7 and 9] work for a

large class of Lévy processes including our Y and Z. Thus, we omit the proof.

Lemma 3.4.11. For any bounded open set D, we have for any x,w 2 D,

GZ

D(x,w)  GY

D(x,w) +

Z

D

Z

D

GY

D(x, y)�(y � z)GZ

D(z, w)dydz.

Theorem 3.4.12. For every bounded -fat domain D, there are constants � = �(d,�, D,�, ⇢) > 0

and c = c(d,�, D,�, ⇢) > 0 such that for all x,w 2 D with |x� w| < �, we have

GD(x,w)  cGY

D(x,w).

Proof. By Theorem 3.4.6, Lemma 3.4.11, and (3.4.9) there exist constants ci = ci(d,�, D,�, ⇢),
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i = 1, 2, such that

GD(x,w)  c1G
Z

D(x,w)  c1G
Y

D(x,w) + c1

Z

D

Z

D

GY

D(x, y)�(y � z)GZ

D(z, w)dydz

 c1G
Y

D(x,w) + c2

Z

D

Z

D

GD(x, y)�(y � z)GD(z, w)dydz

= c1G
Y

D(x,w) + c2GD(x,w)

Z

D

Z

D

GD(x, y)GD(z, w)

GD(x,w)

�(y � z)

J(y � z)
J(y � z)dydz.

Since �(y�z)
J(y�z)  c3

|y�z|⇢
�(|y�z|�2) , by Theorem 3.3.5, there exists a c4 > 0 such that

GD(x,w)  c1G
Y

D(x,w) + c4|x� w|↵+⇢�(|x� w|�2)GD(x,w).

Now take � small so that c4|x� w|↵+⇢�(|x� w|�2)GD(x,w) 
1
2GD(x,w) if |x� w| < �. ⇤

Combining (3.4.9), Theorems 3.4.10 and 3.4.12, we have proved the next theorem which is the

main result of this chapter.

Theorem 3.4.13. Suppose that ↵ 2 (0, 2 ^ d) and D is a bounded -fat open domain. If Y is a

symmetric Lévy process with a Lévy density JY (x) := J(x) + �(x) with � satisfying the condition

(3.4.1), then the Green function GY

D
of Y D

is comparable to the Green function GX

D
of XD

, i.e.,

there exists a constant c = c(D, d,�, ⇢,�) such that

c�1GY

D(x, y)  GD(x, y)  cGY

D(x, y), x, y 2 D.

Remark 3.4.14. The condition that D is connected is crucial in Theorem 3.4.13. For example, if

Y has a Lévy density ⌫Y (x) = ⌫(x)1{|x|<1} and D = B(z, 1)[B(w, 1) where z, w 2 Rd, |z�w| > 2,

then GD(x, y) > 0 for x, y 2 D whereas GY

D
(x, y) = 0 for x 2 B(z, 1) and y 2 B(w, 1).

Combining the above theorem with the main result in [43] ([43, Theorem 1.1]), we immediately

get the following.

Corollary 3.4.15. Suppose that the assumptions of Theorem 3.4.13 are valid and further that D

is a bounded C1,1
domain, then the Green function GY

D
(x, y) satisfies

GY

D(x, y) ⇣

 
1 ^

�(|x� y|�2)p
�(�D(x)�2)�(�D(y)�2)

!
1

|x� y|d �(|x� y|�2)
.
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Chapter 4

Boundary Harnack Principle

In this chapter, we prove the boundary Harnack principle for nonnegative harmonic functions

with respect to perturbations of subordinate Brownian motions that vanish outside a small ball and

a part of the boundary of the domain. The boundary Harnack principle (BHP) for jump processes

(or equivalently for non-local operators) is first established in [14] for symmetric stable processes

in bounded Lipschitz domains and since then a lot of generalizations have been established. In one

direction, the BHP is proved for more general domains than Lipschitz domains. It is established

in [54] for bounded -fat open sets which are discontinuous analogues of John domains and in [12],

the BHP is proved for arbitrary open sets with respect to rotationally symmetric stable processes

and this version of the BHP is known as the uniform boundary Harnack principle. In the other

direction, the BHP is proved for harmonic functions with respect to wider classes of processes

than symmetric stable processes. In [40, 41], the BHP is established for a wide class of subordinate

Brownian motions that include many interesting examples such as stable processes, an independent

sum of stable processes, and relativistic stable processes. In [42], the uniform BHP is proved for a

large class of Lévy processes which include subordinate Brownian motions considered in [40, 41] for

arbitrary open sets. Also in [37, 38] the authors proved several versions of the BHP for so called

truncated stable processes and the starting point of our research in this chapter was to generalize

the result considered in [37, 38] to more general processes than truncated stable processes.

Now we will precisely state the main result of this chapter. In this chapter we will prove that for

nonnegative harmonic functions with respect to perturbations of subordinate Brownian motions

considered in the previous chapter that vanish outside a small ball and near a part of the boundary

of the domain, the ratio of such harmonic functions remains bounded near the boundary of the

domain. Let us state this theorem more precisely. Recall that the processes Y are rotationally

symmetric Lévy processes with the Lévy density JY (x) = jY (|x|) satisfying
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(1) �(x) := JY (x)�JX(x) is integrable in Rd and �(x)  c|x|�d+⇢ for some constants 0 < ⇢ < d,

c > 0, and x 2 B(0, 1).

(2) �(x) is bounded outside the unit ball B(0, 1).

From the condition (1) and Theorem 3.1.1, it is easy to see that there exists a positive constant

c such that

JY (x)  c1J
X(x), x 2 B(0, 1).

From the condition (1) there is a constant c2 such that JY (x) � c2JX(x), x 2 B(0, r) for some

r > 0. The exact value of r is not important and we will assume that r = 1. Hence we conclude

that there is a constant c > 0 such that

c�1JX(x)  JY (x)  cJX(x), x 2 B(0, 1). (4.0.1)

A typical example of Y satisfiying conditions mentioned above is the Lévy process whose Lévy

density is equal to that of X on the closed unit ball B(0, 1) and equal to 0 outside the closed

unit ball. Note that in this case, Y are the so called the truncated SBMs, which is a natural

generalization of truncated stable processes considered in [37, 38]. Now we state the main theorem

of the chapter.

Theorem 4.0.16. Suppose that D is a bounded -fat domain with characteristics (R,). Then

there exists a constant R1 such that if r  R1 and Q 2 @D such that for any nonnegative functions

u, v which are regular harmonic in D\B(Q, 2r) with respect to Y and vanish in (Dc
\B(Q, 2r))[

B(Q, 1� 2r)c, we have

c�1u(Ar(Q))

v(Ar(Q))


u(x)

v(x)
 c

u(Ar(Q))

v(Ar(Q))
, x 2 D \B(Q,

r

2
)

for some constant c = c(D, d,↵, `,�) > 1.

The organization of this chapter is as follows. In section 4.1, we generalize the main result of

chapter 3. We prove that for bounded -fat domains D, the Green functions GX

D
(x, y) and GY

D
(x, y)

are comparable uniformly for all D as long as the Lebesgue measure |D| is small enough. Note
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that in [37, 38] the authors proved a similar result about the comparability of two Green func-

tions of rotationally symmetric stable processes and truncated symmetric stable processes but the

argument of [37, 38] depends on scaling invariant property of rotationally symmetric stable pro-

cesses. In the case of subordinate Brownian motions, the corresponding scaling invariant property

is not true anymore. We overcome this by showing that the constant C that satisfies the relation

C�1GX

D
(x, y)  GY

D
(x, y)  CGX

D
(x, y), x, y 2 D depends on D only via |D|, the Lebesgue measure

of D and if eD is another -fat domain with | eD|  |D| then the same constant C = C(D) works

for eD and the relation C�1GX

eD
(x, y)  GY

eD
(x, y)  CGX

eD
(x, y), x, y 2 eD is true. In section 4.2,

we establish a version of the Harnack principle for nonnegative harmonic functions with respect to

processes Y that vanish outside a small ball. In section 4.3, we establish a version of the BHP for

nonnegative harmonic functions with respect to processes Y that vanish outside a small ball and

a part of the boundary of the domain. Note that this version of the BHP is slightly weaker than

the ordinary version of the BHP in a sense that we require that the harmonic functions vanish

outside a small ball as well as a part of the boundary of the domain. This condition is not just

technical. In fact in [37] the authors proved that the BHP fails for nonnegative harmonic functions

with respect to truncated symmetric stable processes in non-convex domains. This indicates that

the potential theory of perturbations of subordinate Brownian motions could be more delicate than

those of subordinate Brownian motions.

4.1 Uniform Green Functions Comparability

Recall that X,Y are subordinate Brownian motions and their perturbations defined in the previ-

ous chapter. In this section, we prove that the Green functions GX

D
(x, y), GY

D
(x, y) are comparable

with an absolute constant C for all su�ciently small -fat open domains D. More precisely we will

prove

Theorem 4.1.1. Let R > 0. There exist constants C = C(d,, X, Y,R) such that for any bounded

-fat domain D with |D|  R, we have

C�1GY

D(x, y)  GX

D(x, y)  CGY

D(x, y), x, y 2 D. (4.1.1)
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We emphasize that the constant C works for all -fat domain D as long as |D| is small enough. In

general if D is a -fat open set with characteristics (, r0), rD is a -fat domain with characteristics

(, rr0). In order to prove a scaling invariant version of the boundary Harnack principle for Y ,

we need a constant in (4.1.1) to be scaling invariant. In [37, 38] the authors considered truncated

stable processes and achieved (4.1.1) when X are symmetric stable processes and Y are truncated

stable processes by using the 3G theorem and the scaling invariant property of symmetric stable

processes. Note that in the previous chapter, (4.1.1) is proved when X is subordinate Brownian

motion but the constant depends on D via its characteristic (, r0) and it is not clear there if the

constant can be chosen uniformly for all su�ciently small -fat domains D.

We starts with some simple lemmas.

Lemma 4.1.2. Let �X(⇠) be the characteristic exponent of subordinate Brownian motions X.

Then �X(⇠) = 0 if and only if ⇠ = 0.

Proof. This is a simple consequence of the Bernstein function and the proof follows easily from

(2.2.1) and the fact that �X(⇠) = �(|⇠|2). ⇤

The next lemma is about the long time behavior of the heat kernel of X.

Lemma 4.1.3. Let pX(t, x) be a heat kernel of X. Then

lim
t!1

pX(t, x)  lim
t!1

pX(t, 0) = 0.

Proof. Using the inverse Fourier transform, the heat kernel pX(t, ·) can be written as pX(t, x) =

(2⇡)�d
R
e�i⇠xe�t�X(⇠)d⇠. Hence p(t, 0) = (2⇡)�d

R
Rd e�t�X(⇠)d⇠ and from the asymptotic behavior

of �, there exists a constant c > 0 such that �(⇠) � c|⇠|↵`(|⇠|2) for |⇠| � 1. Hence e�t�X(⇠) is

integrable in Rd. Now the conclusion follows from the dominated convergence theorem and Lemma

4.1.2. ⇤

The next lemma is similar to [27, Proposition 1.16]. We provide the details for the reader’s

convenience.
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Lemma 4.1.4. Let ✓ 2 (0, 1) and D be a bounded open set in Rd
. Then there exists a t = t(✓, |D|)

such that

sup
x2Rd

Px(⌧D > nt)  ✓n. (4.1.2)

Furthermore if eD is another bounded open set with | eD|  |D|, then t( eD)  t(D), where t(D)

represents the constant corresponding to the open set D such that (4.1.2) holds.

Proof. For x 2 D and any u > 0

Px(⌧
X

D > u)  Px(Xu 2 D) =

Z

D

pX(u, x, y)dy  pX(u, 0)|D|. (4.1.3)

Now using Lemma 4.1.4 take u large enough so that pX(u, 0)|D| < ✓ < 1. Now from the Markov

property of X

Px(⌧
X

D > (n+ 1)t) = Ex

�
⌧XD > nt,PXnt

(⌧XD > t)
�
 ✓Ex(⌧

X

D > nt)  ✓n+1. (4.1.4)

Hence by induction we have

Px(⌧
X

D > nt)  ✓n. (4.1.5)

Note that if eD is another bounded open set with | eD|  |D|, then we can simply take the same u

in (4.1.3) so that pX(u, 0)| eD|  pX(u, 0)|D| < ✓. ⇤

Lemma 4.1.5. Let D be an open set in Rd
. Then there exists a constant C1 = C1(|D|) such that

sup
x2D

Ex⌧
X

D  C1. (4.1.6)

Furthermore the same constant C1 works for all open set eD as long as | eD|  |D|.

Proof. By an elementary inequality, we have

Ex

✓
⌧X
D

t

◆


1X

n=0

Px

✓
⌧X
D

t
> n

◆
.

Hence from (4.1.5) we have

Ex

✓
⌧X
D

t

◆


1

1� ✓
.
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Hence we have sup
x2D

Ex(⌧D) 
t

1� ✓
. Note that if eD is another bounded open set with | eD|  |D|,

then we can simply take t( eD)  t(D) in Lemma 4.1.4 and get sup
x2D

Ex(⌧
X

eD ) 
t(D)

1� ✓
. ⇤

The proof of next lemma is identical to [32, Lemma 2.4]. We provide the details for reader’s

convenience.

Lemma 4.1.6. Let X be subordinate Brownian motions and Y be perturbations of subordinate

Brownian motions with the Lévy density JY (x) such that � := JY
� JX

is integrable on Rd
and D

be a bounded open set. Then there exists a constant C2 = C2(|D|,�) such that

C�1
2 EY

x ⌧D  EX

x ⌧D  C2EY

x ⌧D.

Furthermore the same constant C2 works for all open sets eD as long as | eD|  |D|.

Proof. Suppose that � = �+ � �� is the Jordan decomposition of �. Let Vt be compound Poisson

processes independent of Xt with the Lévy measure �� and let V
0
t be compound Poisson processes

independent of Yt with the Lévy measure �+. We put Zt = Xt + Vt. Then, of course, we have

{Zt} = {Yt + V
0
t } in distribution. Hence it is enough to show that Ex⌧ZD ⇣ Ex⌧XD .

Let us define a stopping time T by T = inf{t > 0 : Vt 6= 0}. The processes Xt and Vt are mutually

independent. Therefore Xt and T are independent as well. Besides, Zt = Xt for 0  t < T . We set

m = ��(Rd).

First, we claim that Ex(⌧XD )  2Ex(⌧XD ^ t) for t large enough. Indeed, by the Markov property

and Lemma 4.1.5 we have

Ex⌧
X

D = Ex(⌧
X

D ^ t) + Ex

�
⌧XD > t; ⌧XD � t

�

= Ex(⌧
X

D ^ t) + Ex

�
⌧XD > t;EXt

⌧XD
�

 Ex(⌧
X

D ^ t) + C(D)Px(⌧
X

D > t)

 Ex(⌧
X

D ^ t) + C(D)
Ex⌧XD

t
, (4.1.7)

which proves our claim for t � 2C.
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Because ⌧Z
D
^ T = ⌧X

D
^ T , by the independence of T and Xt we get

Ex⌧
Z

D � Ex(⌧
Z

D ^ T ) = Ex(⌧
X

D ^ T ) =

Z 1

0
Ex(⌧

X

D ^ t)me�mtdt

�

Z 1

2C
Ex(⌧

X

D ^ t)me�mtdt �
1

2
e�2CmEx⌧

X

D . (4.1.8)

Now, we prove the upper bound. Again, by the strong Markov property and Lemma 4.1.5 we

get

Ex⌧
Z

D = Ex(⌧
Z

D ^ T ) + Ex(⌧
Z

D > T ; ⌧ZD � T )

 Ex⌧
X

D + Ex(⌧
Z

D > T ;EZT
⌧ZD)

 Ex⌧
X

D + CPx(⌧
Z

D > T ). (4.1.9)

We also have

Px(⌧
Z

D > T )  Px(⌧
X

D � T ) = m

Z 1

0
Px(⌧

X

D � t)e�mtdt  mEx⌧
X

D , (4.1.10)

which gives

Ex⌧
Z

D  (1 + Cm)Ex⌧
X

D ,

where m = ��(Rd) and C = C(D) is a constant in Lemma 4.1.5 such that supx2D Ex⌧XD  C(D).

Now let c1 := max(1 + Cm, 2e2Cm)2 so that

c�1/2
1 Ex⌧

X

D  Ex⌧
Z

D  c1/21 Ex⌧
X

D .

Similarly let c2 := max(1 + Cm̃, 2e2Cm̃)2, where m̃ = �+(Rd), so that

c�1/2
2 Ex⌧

Y

D  Ex⌧
Z

D  c1/22 Ex⌧
Y

D .

Take C2 := max(c1, c2) and this gives

Ex⌧
X

D  C1/2
2 Ex⌧

Z

D  C2Ex⌧
Y

D , Ex⌧
X

D � C�1/2
2 Ex⌧

Z

D � C�1
2 Ex⌧

Y

D ,
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which proves the first part of the lemma.

For the second part of the lemma, suppose that eD is a bounded open set in Rd such that

| eD|  |D|. We choose a constant C = C(D) from Lemma 4.1.5 such that

sup
x2 eD

EX

x ⌧ eD  C(D).

After repeating the same argument in (4.1.7), we have for t � 2C(D),

Ex⌧
X

eD  2Ex(⌧
X

eD ^ t).

Hence as long as | eD|  |D| we can repeat the same proof in (4.1.8) for the open set eD with the

constant C = C(D) and get

Ex⌧
Z

eD �
1

2
e�2C(D)mEx⌧

X

eD .

Similarly from (4.1.9)

Ex⌧
Z

eD  Ex⌧
X

eD + C(D)Px(⌧
Z

eD > T ), (4.1.11)

Px(⌧
Z

eD > T )  Px(⌧
Z

eD � T ) = m

Z 1

0
Px(⌧

X

eD � t)e�mtdt  mEx⌧
X

eD . (4.1.12)

Now from (4.1.11), (4.1.12), as long as | eD|  |D|, we have

Ex⌧
Z

eD  (1 + C(D)m)Ex⌧
X

eD .

Hence for the same constant C2 = max(c1, c2) where c1 := max(1 + C(D)m, 2e2C(D)m)2 and

c2 := max(1 + C(D)m̃, 2e2C(D)m̃)2, as long as | eD|  |D|, we have

Ex⌧
X

eD  C1/2
2 Ex⌧

Z

eD  C2Ex⌧
Y

eD , Ex⌧
X

eD � C�1/2
2 Ex⌧

Z

eD � C�1
2 Ex⌧

Y

eD .

⇤

Remark 4.1.7. In fact, Lemma 4.1.5 can be stated for more general settings. The lemma can be

stated for two pure jump Lévy processes with � := JY
� JX

being integrable on Rd
as long as X

satisfies Lemma 4.1.3.
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Proof of Theorem 4.1.1. We already know from the previous chapter that there is a constant

c = c(D) such that (4.1.1) holds for c(D). The only thing to prove is that there are constants C

and R such that the constant C is independent of the -fat domain D as long as |D|  R. We

establish this by proof by contradiction. Suppose that (4.1.1) is false. Then there must exist R,

cn > 0, and -fat domains Dn such that sup
n

{|Dn|}  R and

GX

Dn
(x, y) > cnG

Y

Dn
(x, y), (4.1.13)

where cn ! 1 as n ! 1. By integrating each side of (4.1.13) in terms of y over Dn, we have

EX

x ⌧Dn
� cnEY

x ⌧Dn
.

But since cn ! 1 as n ! 1, this contradicts Lemma 4.1.6 and this proves the theorem. ⇤

4.2 Harnack Principle

In this section, we will prove a version of the Harnack principle for nonnegative Harmonic func-

tions with respect to processes Y which vanish outside a small ball. We will follow the argument in

[37, Chapter 4] closely but since we are only interested in harmonic functions that vanish outside

a small ball, the ingredients necessary to prove the Harnack principle is actually less than those in

[37].

Now as the first step, from Theorem 4.1.1 there exists a constant C3 such that for any -fat

domains D with |D|  |B(0, 12)|, we have

C�1
3 GX

D(x, y)  GY

D(x, y)  C3G
X

D(x, y) x, y 2 D.

The constant C3 will not change in the rest of the chapter.

We now start with some explanation about the Poisson kernel. It follows from [52, Theorem 1]

that for the processes X, Y and for any bounded Lipschitz domains D,

Px(X⌧D
2 @D) = Px(Y⌧D 2 @D) = 0 , x 2 D.
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Hence from the Ikeda-Watanabe formula, the exit distributions of X and Y are completely deter-

mined by their Poisson kernels KX

D
(x, z) and KY

D
(x, z), respectively. Namely for bounded Lipschitz

domains D and f � 0, it follows that

Ex [f(X⌧D
)] =

Z

D
c

KX

D (x, z)f(z)dz, Ex [f(Y⌧D)] =

Z

D
c

KY

D(x, z)f(z)dz, x 2 D (4.2.1)

where

KX

D (x, z) =

Z

D

GX

D(x, y)JX(y, z)dy, KY

D(x, z) =

Z

D

GY

D(x, y)J
Y (y, z)dy. (4.2.2)

Note that without the Lipschitz assumption on D, from the Lévy system of Y , it follows that

Ex

h
f(Y⌧D), Y⌧�

D

6= Y⌧D

i
=

Z

D
c

KY

D(x, z)f(z)dz, x 2 D.

Now we estimate the Poisson kernel for a ball KY

B(x0,r)
. Define A(x, a, b) := {y 2 Rd : a 

|y � x| < b} for 0  a < b.

Lemma 4.2.1. There exists a constant c1 such that for all r 
1
2 and z 2 A(x0, r, 1� r),

c�1
1 KX

B(x0,r)
(x, z)  KY

B(x0,r)
(x, z)  c1K

X

B(x0,r)
(x, z). (4.2.3)

Proof. For y 2 B(x0, r) and z 2 A(x0, r, 1 � r), |y � z|  |y � x0| + |x0 � z|  r + (1 � r) = 1.

Hence from (4.0.1), Theorem 4.1.1, and (4.2.2),

KY

B(x0,r)
(x, z) =

Z

B(x0,r)
GY

B(x0,r)
(x, y)jY (y, z)dz

 c

Z

B(x0,r)
GX

B(x0,r)
(x, y)jX(y, z)dz = cKX

B(x0,r)
(x, z).

The other direction can be done in a similar way. ⇤

Lemma 4.2.2. There exists a constant c1 such that for all r 
1
2 , x1, x2 2 B(x0,

r

2), and z 2

A(x0, r, 1� r),

c�1
1 KY

B(x0,r)
(x1, z)  KY

B(x0,r)
(x2, z)  c1K

Y

B(x0,r)
(x1, z). (4.2.4)
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Proof. It follows from [41, Proposition 4.11] that there exists a constant c1 such that

c�1
1 KX

B(x0,r)
(x1, z)  KX

B(x0,r)
(x2, z)  c1K

X

B(x0,r)
(x1, z), x 2 B(x0, r/2), z 2 B(x0, r)

c

. (4.2.5)

Now the result follows from Lemma 4.2.1 and (4.2.5). ⇤

Note that � is bounded outside the unit ball B(0, 1) ⇢ Rd. Let M := sup
|x|�1

|�(x)|.

Lemma 4.2.3. There exists a constant c1 such that for all r 
1
2 , x 2 B(x0, r), and z 2 A(x0, 1�

r, 1 + r

2),

KY

B(x0,r)
(x, z)  c1K

X

B(x0,r)
(x, z).

Proof. Without losing generality, we may assume x0 = 0. From Theorem 3.4.13, (4.0.1), (4.2.2),

and the boundedness of � outside the unit ball, we have

KY

B(0,r)(x, z)

=

Z

B(0,r)
GY

B(0,r)(x, y)J
Y (y, z)dy

=

Z

B(0,r)\{|y�z|1}
GY

B(0,r)(x, y)J
Y (y, z)dy +

Z

B(0,r)\{1<|y�z|1+ 3r
2 }

GY

B(0,r)(x, y)J
Y (y, z)dy

 c1

Z

B(0,r)\{|y�z|1}
GX

B(0,r)(x, y)J
X(y, z)dy +

Z

B(0,r)\{1<|y�z|1+ r

2}
GX

B(0,r)(x, y)Mdy.(4.2.6)

Since |y � z|  |y|+ |z|  r + (1 + r

2)  1 + 3r
2 

7
2 for y 2 B(0, r) and z 2 A(x0, 1� r, 1 + r

2), we

have JX(y, z) � jX(72) � c�1
2 M . Hence it follow that (4.2.6) is bounded above by

c1

Z

B(0,r)\{|y�z|1}
GX

B(0,r)(x, y)J
X(y, z)dy + c2

Z

B(0,r)\{1<|y�z|1+ r

2}
GX

B(0,r)(x, y)J
X(y, z)dy,

 c3

Z

B(0,r)
GX

B(0,r)(x, y)J
X(y, z)dy = c3K

X

B(0,r)(x, z).

⇤

Now we are ready to prove the main result of this section, which is a version of the Harnack

principle for harmonic functions with respect to Y that vanish outside a small ball. Note that the

ingredient to prove the Harnack principle in this setting is much less than those that appear in [37]
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because we only consider harmonic functions that vanish outside a small ball.

Theorem 4.2.4. There exists a constant c1 such that for any r 
1
2 and a nonnegative regular

harmonic function u on B(x0, r) with respect to Y that vanishes on B(x0, 1� r)c, we have

c�1
1 u(y)  u(x0)  c1u(y), y 2 B(x0, r/2). (4.2.7)

Proof. It follows from the fact that u is regular harmonic in B(x0, r), (4.2.1), and Lemma 4.2.2

that for any y 2 B(x0, r/2),

u(y) = Ey[u(Y⌧B(x0,r)
)] =

Z

B(x0,r)
c
u(z)KY

B(x0,r)
(y, z)dz

=

Z

A(x0,r,1�r)
u(z)KY

B(x0,r)
(y, z)dz  c

Z

A(x0,r,1�r)
u(z)KY

B(x0,r)
(x0, z)dz = cu(x0)

for some constant c. The other inequality can be done in a similar way. ⇤

4.3 Boundary Harnack Principle

In this section we prove a version of the boundary Harnack principle for nonnegative harmonic

functions with respect to Y that vanish outside a small ball. We will closely follow the argument

in [37, 40, 41]. The main ingredients to prove the boundary Harnack principle is a comparison

of harmonic measures (4.3.6), Carleson type estimate (Lemma 4.3.2), and the Harnack principle

(Theorem 4.2.4). We begin with the comparison of harmonic measures.

Let A be the L2 generator of Y and C1
c (Rd) be the family of the infinitely di↵erentiable functions

on Rd with compact support. Then it is well known (see [37, page 152-153]) that C1
c (Rd) ✓

Dom(A) and for any � 2 C1
c (Rd) and �(x) = 0, we have

Ex[�(Y⌧D)] =

Z

D

GY

D(x, y)A↵�(y)dy. (4.3.1)
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Take a sequence of radial functions �m 2 C1
c (Rd) such that 0  �m  1,

�m(y) =

8
>>>>>><

>>>>>>:

0 |y| < 1/2

1 1  |y|  m+ 1

0 |y| > m+ 2

and that
P

i,j
|

@
2

@yi@yj
�m| is uniformly bounded. Define �m,r(y) := �m(y

r
). The key step is to show

that there is a constant c = c(d,↵, `) such that for every �m,r 2 C1
c (Rd)

sup
M�1

sup
y2Rd

|A�m,r(y)|  c
`(r�2)

r↵
. (4.3.2)

Note that from Theorem 3.1.1 or [40, Lemma 3.10], there is a constant c1 such that

jX(y)  c1
`(|y|�2)

|y|d+↵
, |y|  1. (4.3.3)

Hence it follows from (4.0.1), (4.3.3), boundedness of � outside the unit ball, and the fact that �m

is bounded, we have

|A�m,r(x)|

 c1

����
Z

Rd

�
�m,r(x+ y)� �m,r(x)� (r�m,r(x) · y)1|x|r(y)

�
jY (y)dy

����

 c2

�����

Z

|y|<r

�
�m,r(x+ y)� �m,r(x)� (r�m,r(x) · y)1|x|r(y)

�
jY (y)dy

+

Z

r|y|<1
(�m,r(x+ y)� �m,r(x)) j

Y (y)dy +

Z

1|y|<1
(�m,r(x+ y)� �m,r(x)) j

Y (y)dy

�����

 c3

 �����

Z

|y|<r

(�m,r(x+ y)� �m,r(x)� (r�m,r(x) · y)) j
X(y)dy

�����+
Z

r|y|<1
jX(y)dy + 1

!

 c4

 
1

r2

Z

|y|<r

|y|2jX(y)dy +

Z

r<|y|<1
jX(y)dy + 1

!

 c5

 
1

r2

Z

|y|<r

|y|2
`(|y|�2)

|y|d+↵
dy +

Z

r<|y|<1

`(|y|�2)

|y|d+↵
dy + 1

!

 c6
`(r�2)

r↵
.
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Now combining (4.3.1) and (4.3.2), for any x 2 D \B(0, r/2) we have

Px(Y⌧D 2 B(0, r)c) = lim
m!1

Px (Y⌧D 2 A(0, r, (m+ 1)r))  c6r
�↵`(r�2)

Z

D

GY

D(x, y)dy. (4.3.4)

The next lemma is similar to [40, Lemma 4.2] or [41, Lemma 4.16].

Lemma 4.3.1. There exists a constant c > 0 such that for any open set D with B(A,r) ✓ D ✓

B(0, r) for r 
1
2 and  2 (0, 1/2], we have for every x 2 D \B(A,r)

Z

D

GY

D(x, y)dy  cr↵�d�↵/2 1

`((4r)�2)

✓
1 +

`((r2 )
�2)

`((4r)�2)

◆
Px(Y⌧D\B(A,r)

2 B(A,r)).

Proof. Let ⌦ := D \ B(A,r). Note that for y 2 B(A, 1/2r) ✓ D, |y � z|  |y| + |z|  2r  1.

Hence we have

KY

⌦ (x, y) =

Z

⌦
GY

⌦(x, z)J
Y (z, y)dz � c1K

X

⌦ (x, y)

for some constant c1 > 0. Then we have from [40, Lemma 4.2] or [41, Lemma 4.17]

Px(Y⌧⌦ 2 B(A,r)) =

Z

B(A,r)
KY

⌦ (x, y)dy

� c1

Z

B(A,r)
KX

⌦ (x, y)dy = c1Px(X⌧⌦ 2 B(A,r))

� c2

✓
r↵�d�↵/2 1

`((4r)�2)

✓
1 +

`((r2 )
�2)

`((4r)�2)

◆◆�1

·

Z

D

GX

D(x, y)dy

� c3

✓
r↵�d�↵/2 1

`((4r)�2)

✓
1 +

`((r2 )
�2)

`((4r)�2)

◆◆�1

·

Z

D

GY

D(x, y)dy. (4.3.5)

⇤

Thus from (4.3.4) and (4.3.5) we have proved for every r 
1
2

Px(Y⌧D 2 B(0, r)c)  c�d�↵/2 `(r�2)

`((4r)�2)

✓
1 +

`((r2 )
�2)

`((4r)�2)

◆
Px(Y⌧D\B(A,r)

2 B(A,r)), (4.3.6)

for some constant c > 0 and x 2 D \B(A,r).

Now we focus on proving Carleson type estimate for nonnegative harmonic functions with respect

to Y , which is the second ingredient to prove the boundary Harnack principle.
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Lemma 4.3.2. There exists a constant R2 2 (0, 14 ] such that the following property holds. Assume

that B(A,r) ⇢ D\B(Q, r), r  R2. Suppose that u(x) is a nonnegative regular harmonic function

in B(Q, 2r) \D and vanishing on (B(Q, 2r) \Dc) [B(Q, 1� 2r)c and v(x) is a regular harmonic

function on D \B(Q, r) defined by,

v(x) =

8
>><

>>:

u(x) on B(Q, 3r2 )
c

0 on A(Q, r, 3r2 ) [ (B(Q, r) \Dc).

Then there exists a constant c > 0 such that

u(A) � v(A) � c↵
`((2r)�2)

`((r)�2)
u(x), x 2 D \B(Q,

3r

2
).

Proof. Without losing generality, we may assumeQ = 0. First, from Lemma 4.2.2, [40, Proposition

3.8], or [41, Proposition 4.10] and from the fact |y �A|  |y|+ |A|  2|y| it follows

v(A) = EA

h
v(Y⌧D\B(0,r)

)
i

� EA

h
v(Y⌧D\B(0,r)

);Y⌧D\B(0,r)
6= Y⌧(D\B(0,r))�

i

=

Z

B(0, 3r2 )c
u(y)KY

D\B(0,r)(A, y)dy

�

Z

A(0, 3r2 ,1�2r)
u(y)KY

B(A,r)(A, y)dy

� c1

Z

A(0, 3r2 ,1�2r)
u(y)KX

B(A,r)(A, y)dy

� c2

Z

A(0, 3r2 ,1�2r)
u(y)jX(|y �A|)

(r)↵

`((r)�2)
dy,

� c3
(r)↵

`((r)�2)
⇥

Z

A(0, 3r2 ,1�2r)
u(y)jX(|y|)dy.

Hence we have shown that there exists a constant c3 > 0 such that

v(A) � c3
(r)↵

`((r)�2)
·

Z

A(0, 3r2 ,1�2r)
u(y)jX(|y|)dy. (4.3.7)

From [40, Equation 4.4] or [41, Equation 4.34], there exists a � 2 (106 r,
11
6 r) and a constant c4
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such that for any positive function u with respect to Y ,

Z

A(0,�,2r)
`((|y|� �)�2)1/2(|y|� �)�

↵

2 u(y)dy  c4
r�↵/2

`((2r)�2)1/2

Z

A(0, 10r6 ,2r)
`(|y|�2)u(y)dy. (4.3.8)

Secondly, we derive an upper bound of u(x). From the harmonicity of u

u(x) = Ex[u(Y⌧D\B(0,�)
)]

= Ex[u(Y⌧D\B(0,�)
);Y⌧D\B(0,�)

2 B(0,�)c]

= Ex[u(Y⌧D\B(0,�)
);Y⌧D\B(0,�)

2 B(0,�)c, Y⌧D\B(0,�)
= Y⌧B(0,�)

]

 Ex[u(Y⌧B(0,�)
);Y⌧B(0,�)

2 B(0,�)c]

=

Z

A(0,�,2r)
u(y)KY

B(0,�)(x, y)dy +

Z

A(0,2r,1�2r)
u(y)KY

B(0,�)(x, y)dy. (4.3.9)

Now we estimate the first and second equations of the last expression. For y 2 A(0, 2r, 1� 2r),

|y|  1�2r  1��. Hence from [40, Proposition 3.8] or [41, Proposition 4.10] and (4.3.8), we have

Z

A(0,2r,1�2r)
u(y)KY

B(0,�)(x, y)dy

 c5

Z

A(0,2r,1�2r)
u(y)KX

B(0,�)(x, y)dy

 c6

Z

A(0,2r,1�2r)
u(y)jX(|y|� �)

�↵/2

(`(��2))1/2
(� � |x|)↵/2

`((� � |x|)�2)1/2
dy

 c7
(2r)↵

`((2r)�2)
⇥

Z

A(0,2r,1�2r)
u(y)jX(|y|)dy.

In the last inequality we used [40, Lemma 3.11] that there exists a R 2 (0, 14 ] such that for any

0 < s  r  R, s
↵

2

`((s)�2)1/2
 c r

↵

2

`((r)�2)1/2
. Also |y|�� > 1

12 |y| gives j
X(|y|��) < jX( 1

12 |y|)  cj(|y|).
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For the first term in (4.3.9), from [40, Proposition 3.8] or [41, Proposition 4.10] we get

Z

A(0,�,2r)
u(y)KY

B(0,�)(x, y)dy

 c8

Z

A(0,�,2r)
u(y)KX

B(0,�)(x, y)dy

 c9

Z

A(0,�,2r)
u(y)

�↵/2�d

`(��2)1/2
((|y|� �)�2)1/2

(|y|� �)↵/2
dy

 c10r
�d

(2r)↵/2

`((2r)�2)1/2

Z

A(0,�,2r)
u(y)

((|y|� �)�2)1/2

(|y|� �)↵/2
dy

 c11r
�d

(2r)↵/2

`((2r)�2)1/2
r�↵/2

`((2r)�2)1/2

Z

A(0, 12r6 ,2r)
u(y)`(|y|�2)dy

 c12
r↵

`((2r)�2)

Z

A(0, 10r6 ,2r)
u(y)`(|y|�2)|y|�d�↵dy

 c13
r↵

`((2r)�2)

Z

A(0, 10r6 ,2r)
u(y)jX(|y|)dy.

Combining these two estimates, we have

u(x) 
r↵

`((2r)�2)

Z

A(0, 10r6 ,1�2r)
u(y)jX(|y|)dy. (4.3.10)

From (4.3.7) and (4.3.10), we have

v(A) � c↵
`((2r)�2)

`((r)�2)
u(x), x 2 D \B(Q,

3r

2
).

⇤

Now we are ready to prove the main result of this chapter - a version of the boundary Harnack

principle for perturbations of subordinate Brownian motions. The proof will be similar to those in

[37, 40, 41].

Proof of 4.0.16. Without lose of generality, we may assume u(Ar(Q)) = v(Ar(Q)) and Q = 0.

Since ` is slowly varying at 1, there is a R3 2 (0, R2] such that

sup
rR3

✓
`((2r)�2)

`((r)�2)
,
`((r)�2)

`((2r)�2)
,
`((r2 )

�2)

`((4r)�2)
,
`(r�2)

`((4r)�2)

◆
 2. (4.3.11)

Now we define regular Harmonic functions u1(x) and u2(x) with respect to Y on B(0, r) \D as
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follows.

u1(x) =

8
>><

>>:

0 x 2 A(0, r, 3r2 ) [ (Dc
[B(0, r))

u(x) x 2 B(0, 3r2 )
c ,

u2(x) =

8
>><

>>:

0 x 2 B(0, 3r2 )
c

u(x) x 2 A(0, r, 3r2 ) [ (Dc
[B(0, r)).

Clearly u(x) = u1(x) + u2(x). First we estimate u1(x).

u1(x) = Ex[u1(Y⌧D\B(0,r)
)]

=

Z

(D\B(0,r))c
u(y)KY

D\B(0,r)(x, y)dy

=

Z

(B(0, 3r2 ))c
u(y)KY

D\B(0,r)(x, y)dy

=

Z

(B(0, 3r2 ))c\B(0,1�2r)
u(y)

Z

D\B(0,r)
GY

D\B(0,r)(x, z)J
Y (z, y)dzdy.

For z 2 D\B(0, r) and y 2 B(0, 3r2 )
c
\B(0, 1�2r), |z�y| < 1 and this implies JX(z, y) ⇣ JY (z, y).

Also |y�z|  |y|+ |z|  3|y| and |y|  |y�z|+ |z|  3|y�z| and this implies JX(z, y) ⇣ JX(0, y) =

jX(|y|). Now define,

s(x) :=

Z

D\B(Q,r)
GY

D\B(0,r)(x, z)dz.

Then we have

c�1
1

Z

B(0, 3r2 )
u(y)jX(|y|)dy 

u1(x)

s(x)
 c1

Z

B(0, 3r2 )
u(y)jX(|y|)dy,

u1(x)

s(x)
/
u1(A)

s(A)
 c2, x 2 D \B(0, r).

By changing the role of u1(x) and v1(x) and from Lemma 4.3.2

u1(x)  c3
s(x)

s(A)
u1(A)  c4

s(x)

s(A)
u(A) = c4

s(x)

s(A)
v(A)  c5

v1(x)

v1(A)
v(A)  c6v1(x)  c6v(x).

Hence we now have shown that

u1(x)  c6v(x). (4.3.12)
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Secondly we estimate u2(x). From the harmonicity of u2(x) we have

u2(x) = Ex[u2(Y⌧D\B(Q,r)
)]

= Ex


u(Y⌧D\B(Q,r)

);Y⌧D\B(Q,r)
2 A(0, r,

3r

2
) \D

�

 sup
x2A(0,r, 3r2 )\D

u(x) · Px(Y⌧D\B(Q,r)
2 B(Q, r)c)

 c7
�↵
`((r)�2)

`((2r)�2)
u(A)Px(Y⌧D\B(Q,r)

2 B(Q, r)c).

Now from Lemma 4.3.1, (4.3.11) and Theorem 4.2.4, we have

u2(x)  c8
�d� 3↵

2
`((r)�2)

`((2r)�2)

`(r�2)

`((4r)�2)

✓
1 +

`((r2 )
�2)

`((4r)�2)

◆
u(A)Px

⇣
Y⌧D\B(A,r)

2 B(A,r)
⌘

 c9 inf
x2B(A,r)

u(x) · Px

⇣
Y⌧D\B(A,r)

2 B(A,r)
⌘

 c10Ex

h
v(Y⌧D\B(A,r)

)
i

= c10v(x).

Hence we get

u2(x)  c10v(x). (4.3.13)

Combining (4.3.12) and (4.3.13), we get

u(x) = c6u1(x) + c10u2(x)  cv(x), x 2 D \B(0,
r

2
).

⇤
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Chapter 5

Martin Boundary and Minimal
Martin Boundary

In this chapter, we study the Martin boundary of bounded -fat domains with respect to Y . In

particular, we prove that the Martin boundary and the minimal Martin boundary of bounded -fat

domains with respect to Y is the same as the Euclidean boundary. One of important ingredients

commonly used to prove identifying the Martin and the minimal Martin boundary with the Eu-

clidean boundary is the (scaling invariant) boundary Harnack principle (see [37, 40, 54]). However,

it is proved in [38] that the boundary Harnack principle is not true for truncated stable processes

in non-convex domains. Therefore we can’t use the boundary Harnack principle to identify the

Martin and the minimal Martin boundary with the Euclidean boundary when the domain is non-

convex. We follow the argument that is close to [38], where the authors proved the similar result

about identifying the Martin and the minimal Martin boundary of so called roughly connected

-fat domains with the Euclidean boundary with respect to truncated stable processes. One of the

key ingredient is the uniform Green function comparability result in section 4.1.

5.1 Martin Boundary and Martin Representation

Recall that D is a bounded -fat domain with characteristic (r0,) and for each Q 2 @D and

r 2 (0, r0), Ar(Q) is a point in D \ B(Q, r) satisfying B(Ar(Q),r) ⇢ D \ B(Q, r). Combining

the boundary Harnack principle for X (Theorem 3.1.5) and Theorem 3.4.13, we get the following

boundary Harnack principle for the Green function GY

D
(x, y) which will play an important role in

this section.

Theorem 5.1.1. There exists a constant c = c(D, d,�, ⇢,�) such that for any Q 2 @D, r 2 (0, r0)
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and z, w 2 D \B(Q, 2r), we have

c�1 G
Y

D
(z,Ar(Q))

GY

D
(w,Ar(Q))


GY

D
(z, x)

GY

D
(w, x)

 c
GY

D
(z,Ar(Q))

GY

D
(w,Ar(Q))

, x 2 D \B(Q,
r

2
).

The following result was proved in [14] for harmonic functions with respect to stable processes

in bounded Lipschitz domains, in [37] for harmonic functions with respect to truncated stable

processes in bounded convex domains, and in [38] for harmonic functions with respect to truncated

stable processes in roughly connected -fat domains. We reproduce the proof for the sake of

completeness.

Lemma 5.1.2. There exist positive constants c = c(D, d,�, ⇢,�), � = �(D, d,�, ⇢,�) < ↵ and

R = R(, `) such that for any Q 2 @D and r  R, and a nonnegative function u which is harmonic

with respect to Y in D \B(Q, r), we have

u(Ar(Q))  c

✓
2



◆
� `((2 )

�2kr�2)

`(r�2)
u(A(2 )

kr(Q)).

Proof. Let ⌘k :=
�


2

�
k
r, Ak := A⌘k

(0), and Bk := B(Ak, ⌘k+1). Note that the Bk’s are disjoint.

Since u is harmonic with respect to Y and all Bk’s are disjoint, we have

u(Ak) �

k�1X

l=0

EAk

h
u(Y⌧B

k
) : Y⌧B

k
2 Bl

i

=
k�1X

l=0

Z

Bl

KY

Bk
(Ak, z)u(z)dz.

From Lemma 4.2.1, the Harnack principle, and [40, Proposition 3.8], we have

u(Ak) � c1

k�1X

l=0

Z

Bl

KY

Bk
(Ak, z)u(z)dz

� c2

k�1X

l=0

u(Al)

Z

Bl

KX

Bk
(Ak, z)dz

� c3

k�1X

l=0

u(Al)
(⌘k+1)↵

(⌘l+1)↵
`(⌘l+1)�2

`(⌘k+1)�2
.
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Hence we have

(⌘k)
�↵u(Ak)`(⌘

�2
k+1) � c4

k�1X

l=0

(⌘l)
�↵u(Al)`(⌘

�2
l+1).

Let ak := (⌘k)�↵u(Ak)`(⌘
�2
k+1). Then ak � c4

P
k�1
l=1 al. By induction, we have ak � c6(1 +

c5
2 )

ka0

for some constant c5 = c5(d,↵, `) > 0. Thus with � = ↵� ln(1 + c4
2 ) ln

�
2


��1
, we get

u(Ar(Q))  c6

✓
2



◆
�k `

�
(2 )

�2(k+1)r�2
�

`
�
(2 )

�2r�2
� u

⇣
A(2 )

kr(Q)
⌘
.

Since ` is slowly varying at 1, we have

u(Ar(Q))  c7

✓
2



◆
�k `

�
(2 )

�2kr�2
�

`(r�2)
u
⇣
A(2 )

kr(Q)
⌘
.

⇤

The next lemma is the analogue of Lemma 4.4 in [38]. Instead of repeating the similar proof in

Lemma [38], we use Theorem 3.4.13 and 4.2.3 to make the proof shorter.

Lemma 5.1.3. There exist positive constants c1 = c1(D, d,�, ⇢,�) and c2 = c2(D, d,�, ⇢,�) < 1

such that for any Q 2 @D, r 2 (0, r0), and w 2 D \B(Q, 4r), we have

Ex

h
GY

D(Y⌧Y
D\B

k

, w) : Y
⌧
Y

D\B
k

2 A(Q, r, 1 + 4�kr)
i
 c1c

k

2G
Y

D(x,w), x 2 D \Bk,

where Bk := B(Q, 4�kr), k = 0, 1, · · · .

Proof. It is easy to see by repeating the proof in [40, Lemma 5.4] with slight modifications that

Ex

h
GX

D(X
⌧
X

D\B
k

) : X
⌧
X

D\B
k

2 A(Q, r, 1 +
r

4k
)
i
 c1c

k

2G
X

D(x,w),

for some constants c1 > 0 and 0 < c2 < 1. From Theorem 3.4.13, (4.2.1), and Lemma 4.2.3, we
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have

Ex

h
GY

D(Y⌧Y
D\B

k

) : Y
⌧
Y

D\B
k

2 A(Q, r, 1 +
r

4k
)
i

=

Z

A(Q,r,1+ r

4k
)
GY

D(y, w)K
Y

D\Bk
(x, y)dy

 c3

Z

A(Q,r,1+ r

4k
)
GX

D(y, w)KX

D\Bk
(x, y)dy

= c3Ex

h
GX

D(X
⌧
X

D\B
k

) : X
⌧
X

D\B
k

2 A(Q, r, 1 +
r

4k
)
i

 c4c
k

2G
X

D(x,w)

 c5c
k

2G
Y

D(x,w).

⇤

Now the next theorem is about the Hölder continuity of the Martin kernel of Y , which is an

analogue of [38, Theorem 4.5] and it follows from Theorem 5.1.1, Lemma 5.1.2, and Lemma 5.1.3

(instead of [14, Lemmas 5, 13, and 14], respectively) in very much the same way as in the case

of symmetric stable processes in [14, Lemma 16]. We omit the details since the proof is almost

identical to [14, Lemma 16].

Theorem 5.1.4. There exist positive constants r1, M1, c, and ⌘ depending on D, d,�, ⇢,� such

that for any Q 2 @D, r < r1 , and z 2 D \B(Q,M1r), we have

��MY

D (z, x)�MY

D (z, y)
��  c

✓
|x� y|

r

◆
⌘

, x, y 2 D \B(Q, r).

In particular, the limit lim
D3y!w

MY

D (x, y) exists for every w 2 @D.

There is a compactification DM of D, unique upto a homeomorphism, such that MY

D
(x, y) has

a continuous extension to D ⇥ (DM
\ {x0}) and MY

D
(·, z1) = MY

D
(·, z2) if and only if z1 = z2 (See,

for instance, [46]). The set @MD = DM
\D is called the Martin boundary of D. For z 2 @MD, set

MY

D
(·, z) to be zero in Dc.

A positive harmonic function u for Y D is minimal if, whenever v is a positive harmonic function

for Y D with v  u on D, one must have u = cv for some constant c. The set of points z 2 @MD

such that MY

D
(·, z) is minimal harmonic for Y D is called the minimal Martin boundary of D.
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For each z 2 @D and x 2 D, let

MY

D (x, z) := lim
D3y!z

MY

D (x, y),

which exists by Theorem 5.1.4. For each z 2 @D, set MY

D
(x, z) to be zero for x 2 Dc.

Lemma 5.1.5. For every z 2 @D and B ⇢ B ⇢ D, MY

D
(Y⌧B , z) is Px-integrable.

Proof. Take a sequence {zm}m�1 ⇢ D \ B converging to z. Since MY

D
(·, zm) is regular harmonic

for Y in B, by Fatou’s lemma and Theorem 5.1.4,

Ex

⇥
MY

D (Y⌧B , z)
⇤

= Ex

h
lim

m!1
MY

D (Y⌧B , zm)
i

 lim inf
m!1

MY

D (x, zm) = MY

D (x, z) < 1.

⇤

Lemma 5.1.6. For every z 2 @D, x 2 D, and 0 < r < r1 ^
�D(x)

3 ,

MY

D (x, z) = Ex

h
MY

D

⇣
Y D

⌧B(x,y)
, z
⌘i

.

Proof. Fix z 2 @D, x 2 D, and 0 < r < r1^
�D(x)

3 . Let ⌘m :=
�


2

�
m
r, zm := A⌘m(z), m = 0, 1, · · · .

Note that for y 2 B(x, r) and w 2 B(zm, ⌘m+1)

|y � w| � |x� w|� |x� y| � |x� w|� r � |x� z|� |z � w|� r � �D(x)� ⌘m � r � r. (5.1.1)

Hence, B(zm, ⌘m+1) ⇢ D \B(x, r) for all m � 0. Thus by the harmonicity of MY

D
(·, zm), we have

MY

D (x, zm) = Ex

h
MY

D

⇣
Y⌧B(x,r)

, zm
⌘i

.

On the other hand, by Theorem 5.1.1, there exist constants m0 � 0 and c1 > 0 such that for

every w 2 D \B(z, ⌘m) and y 2 D \B(z, ⌘m+1),

MY

D (w, zm) 
GY

D
(w, zm)

GY

D
(x0, zm)

 c1
GY

D
(w, y)

GY

D
(x0, y)

= c1M
Y

D (w, y), m � m0.
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Let y ! z 2 @D we get

MY

D (w, zm)  c1M
Y

D (w, z), m � m0, (5.1.2)

for every w 2 D \B(z, ⌘m).

Hence in order to prove the lemma, it is enough to show that {MY

D
(·, zm) : m � m0} is Px-

uniformly integrable. Since MY

D
(Y⌧B(x,r)

, z) is Px-integrable by Lemma 5.1.5, for any " > 0 there is

N0 > 1 such that

Ex


MY

D

⇣
Y⌧B(x,r)

, z
⌘
: MY

D

⇣
Y⌧B(x,r)

, z
⌘
>

N0

c1

�
<

"

2c1
. (5.1.3)

Now by (5.1.2) and (5.1.3)

Ex

h
MY

D (Y⌧B(x,r)
, zm) : Y⌧B(x,r)

2 D \B(z, ⌘m),MY

D (Y⌧B(x,r)
, zm) > N0

i

 Ex

h
c1M

Y

D (Y⌧B(x,r)
, z) : c1M

Y

D (Y⌧B(x,r)
, z) > N0

i

 c1
"

2c1
=
"

2
.

Now from (4.2.1) we have

Ex

h
MY

D (Y⌧B(x,r)
, zm) : Y⌧B(x,r)

2 B(z, ⌘m)
i
=

Z

B(z,⌘m)\D
MY

D (w, zm)KY

B(x,r)(x,w)dw.

For y 2 B(x, r) and w 2 B(z, ⌘m)\D, it follows from (5.1.1) that JY (y, w)  c2 for some constant

c2 = c2(r), where c2(r) = sup
|z|>r

JY (z) < 1. Hence we have from (4.2.2) that

KY

B(x,r)(x,w) =

Z

B(x,r)
GY

B(x,r)(x, y)J
Y (y, w)dy

 c2(r)

Z

B(x,r)
GY

B(x,r)(x, y)

 c3(r).
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Now we see that

Ex

h
MY

D (Y D

⌧B(x,r)
, zm) : Y⌧B(x,r)

2 D \B(z, ⌘m)
i

 c3

Z

B(z,⌘m)
MY

D (w, zm)dw

= c3
1

GY

D
(x0, zm)

Z

B(z,⌘m)
GY

D(w, zm)dw.

Note that by Lemma 5.1.2, there exist c4 = c4(D,↵, `,m0), c5 = c5(D,↵, `,m0, r) > 0, and � < ↵

such that

GY

D(x, zm)�1
 c4(



2
)��m

`
�
(2 )

�2(m+1)(2 )
�2m0r�2

�

`
�
(2 )

�2(2 )
�2m0r�2

� GY

D(x0, zm)�1

 c5(


2
)��m`

⇣
(


2
)�2m(



2
)�2(m0+1)r�2

⌘
.

On the other hand, by Theorem 3.1.1 and Theorem 3.4.13

Z

B(z,⌘m)
GY

D(w, zm)  c6

Z

B(z,2⌘m)

dw

`(|w � zm|�2)|w � zm|d�↵

 c7

Z 2⌘m

0

s↵�1

`(s�2)
ds  c8

(⌘m)↵

`((2⌘m)�2)
.

In the last inequality above, we have used [40, Equation (3.16)]. Now it follows from above that

there exists c8 = c8(D,↵, `,m0, r) such that

Ex


MY

D (Y D

⌧B(x,r)
, zm) : Y⌧B(x,r)

2 D \B(z,
2r

m
)

�

 c8(


2
)(↵��)m `

�
(2 )

�2m(2 )
�2(m0+1)r�2

�

`(2 )
�2m(2r)�2

.
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Since ` is slowly varying at 1, we can take N = N(", D,m0, r) so that for m > N

Ex

h
MY

D (Y⌧B(x,r)
zm) : MY

D (Y⌧B(x,r)
zm) > N

i

 Ex


MY

D (Y⌧B(x,r)
zm) : Y⌧B(x,r)

2 D \B(z,
2r

m
)

�
+

Ex


MY

D (Y⌧B(x,r)
zm) : MY

D (Y⌧B(x,r)
zm) > N, Y⌧B(x,r)

2 D \B(z,
2r

m
)

�

 c9(


2
)(↵��)m `

�
(2 )

�2m(2 )
�2(m0+1)r�2

�

`(2 )
�2m(2r)�2

+
"

2
< ".

As each MY

D

⇣
Y⌧B(x,r)

, zm
⌘

is Px-integrable, we conclude that {MY

D

⇣
Y⌧B(x,r)

, zm
⌘

: m � m0} is

uniformly integrable under Px. ⇤

It is easy to see that Px (Y⌧U 2 @U) = 0 for every smooth open set U ([55, Theorem 1]). Hence,

one can follow the proof of [23, Theorem 2.2] or the proof of [38, Theorem 4.8] and show that the

two lemmas above imply that MY

D
(·, z) is harmonic for Y . We omit the details since the proof is

almost identical.

Theorem 5.1.7. For every z 2 @D, the functions x 7! MY

D
(·, z) is harmonic in D with respect to

Y .

Recall that a point z 2 @D is said to be a regular boundary point for Y if Pz(⌧YD = 0) = 1 and

an irregular boundary point if Pz(⌧YD = 0) = 0. It is well known that if z 2 @D is regular for Y ,

then for any x 2 D, GY

D
(x, y) ! 0 as y ! z.

Lemma 5.1.8. (1) If z, w 2 @D, z 6= w and w is a regular boundary point for Y , then MY

D
(x, z) !

0 as x ! w.

(2) The mapping (x, z) 7! MY

D
(x, z) is continuous on D ⇥ @D.

Proof. For any y 2 B(Q, r), where r < (r0 ^ �D(x)) /2, we have from Theorem 5.1.1

MY

D (x, y) =
GY

D
(x, y)

GY

D
(x0, y)

 c
GY

D
(x,Ar(Q))

GY

D
(x0, Ar(Q))

, (5.1.4)
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for some constant c > 0. By letting y ! Q in (5.1.4), we have

MY

D (x,Q)  c
GY

D
(x,Ar(Q))

GY

D
(x0, Ar(Q))

.

Now the left hand side converges to zero as x approaches to any regular boundary point other than

Q.

For the second part of the lemma, note that MY

D
(·, Q) is harmonic in D and therefore continuous

there (see, for example, (4.2.1)). Now we have from Theorem 5.1.4

|MY

D (x, P )�MY

D (y,Q)|  |MY

D (x, P )�MY

D (y, P )|+ |MY

D (y, P )�MY

D (y,Q)|

 |MY

D (x, P )�MY

D (y, P )|+ c

✓
|P �Q|

⌘

r

◆
.

Now the second part of the lemma follows by letting x ! y and P ! Q. ⇤

So far we have shown that the Martin boundary of D can be identified with a subset of the

Euclidean boundary @D. In order to prove that the Martin boundary and the minimal Martin

boundary can be identified with the Euclidean boundary, we need some lemmas. The need for

these lemmas comes from the existence of irregular boundary points and we will follow arguments

that are close to those in [40] and [46].

Lemma 5.1.9. Suppose that h is a bounded singular harmonic function with respect to Y in a

bounded open set D. If there is a set N of zero capacity such that for any z 2 @D \N ,

lim
D3x!z

h(x) = 0,

then h is identically zero.

Proof. The proof is identical to [40, Lemma 5.10] and we provide the details for the reader’s

convenience. Take an increasing sequences of open sets {Dm}m�1 satisfying Dm ⇢ Dm+1 and

[
1
m=1Dm = D. Set ⌧m = ⌧Dm

. Then ⌧m " ⌧D and lim
m!1

Y⌧m = Y⌧D by the quasi-left continuity of

X. Since N has zero capacity, we have

Px(Y⌧D 2 N) = 0, x 2 D.
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Therefore by the bounded convergence theorem we have for any x 2 D,

h(x) = lim
m!1

Ex (h(Y⌧m) : ⌧m < ⌧D)

= lim
m!1

Ex

�
h(Y⌧m)1@D\N (Y⌧D) : ⌧m < ⌧D

�

= 0.

⇤

Lemma 5.1.10. Let D be a bounded -fat open set and I be irregular boundary points of D with

respect to Y . Then cap(I) = 0.

Proof. By [9, Proposition II.3.3], I is semi-polar and it is polar by [30, Theorem 4.1.2]. Hence it

follows that cap(I) = 0. ⇤

Now we are ready to prove the main theorem of this chapter.

Theorem 5.1.11. The Martin boundary and the minimal Martin boundary of D with respect to

Y can be identified with the Euclidean boundary of D.

Proof. So far, we have shown that the Martin boundary can be identified with a subset of the

Euclidean boundary. We will show that for z1, z2 2 @D, z1 6= z2, we have MY

D
(·, z1) 6= MY (·, z2)

and this will show that the Martin boundary coincides with the Euclidean boundary of D. Let I

be the set of irregular points of D with respect to Y . By Lemma 5.1.10, we have cap(I) = 0. Take

a decreasing sequence of open sets �m containing I such that

lim
m!1

cap(�m) = 0.

Then we have

lim
m!1

Px(T�m
< 1) = 0, x /2 \

1
m=1�m.

Define Dk := {x 2 D : dist(x,Dc) > 1
k
} and !x

A
be a harmonic measure of A starting at x, that is

!x

A
(·) := Px(Y⌧A 2 ·). Without lose of generality, we may assume x0 2 D1 \�1

c
. Hence we have

!x0
Dk

(�m \Dc

k
) = Px0

⇣
Y⌧D

k
2 �m

⌘
,
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lim
m!1

sup
k

!x0
Dk

(�m \Dc

k
) = 0.

For each z 2 @D, define

⌫z
k
(dy) := MY

D (y, z)!x0
Dk

(dy).

Then we have ⌫z
k
(Rd) =

R
Rd MY

D
(y, z)!x0

Dk
(dy) = MY

D
(x0, z) = 1. Next we will show that ⌫z

k

converges weakly to �z, the point measure on z, as k ! 1. For given ✏, let B := B(z, "). Then we

have

⌫z
k
(Bc) =

Z

Bc

MY

D (y, z)!x0
Dk

(dy)

=

Z

(Bc\�m)\Dc

k

MY

D (y, z)!x0
Dk

(dy) +

Z

(Bc\�m)\Dc

k

MY

D (y, z)!x0
Dk

(dy)

 sup
y2Bc

MY

D (y, z)!x0
Dk

(�m \Dc

k
) + sup

y2(Bc\�m)\Dc

k

MY

D (y, z).

By Theorem 5.1.1, MY

D
(·, z) is bounded on · 2 Bc. Hence for given " choose m = m(") such that

!x0
Dk

(�m \Dc

k
) <

"

2 supy2Bc MY

D
(y, z)

.

Now from Lemma 5.1.8 we can choose k = k(",m) such that sup
y2(Bc\�m)\Dc

k

MY

D (y, z) < "/2. Hence

we have shown that ⌫z
k
) �z as k ! 1. Hence if MY

D
(·, z1) = MY

D
(·, z2), we must have z1 = z2.

Now we will focus on proving the minimal Martin boundary can be identified with the Euclidean

boundary. Fix z 2 @D and suppose that h  MY

D
(·, z), where h is nonnegative and harmonic with

respect to Y in D. Then there is a finite measure µ on @D such that

h(·) =

Z

@D

MY

D (·, w)µ(dw).

If µ is not a multiple of �z, then there is a positive measure ⌫  µ such that dist(z, supp(⌫)) > 0.

Let

u(·) :=

Z

@D

MY

D (·, w)⌫(dw).

Then u is a positive harmonic function with respect to Y in D and is bounded above by MY

D
(·, z).

Take " = 1
2dist(z, supp(⌫)). Then by the boundary Harnack principle for the Green function
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(Theorem 5.1.1), MY

D
(·, z) is bounded on B(z, ")c and so is u. Again from the boundary Harnack

principle we see that MY

D
(·, ·) is bounded on B(z, ") ⇥ supp(⌫), so u is also bounded on B(z, ").

Since MY

D
(x, z) ! 0 as x approaches any regular boundary points di↵erent from z, u(x) ! 0 as

x approaches any regular boundary points di↵erent from z. From Lemma 5.1.9 we see that u is

identically zero. Therefore µ = c�z for some c > 0 and MY

D
(·, z) is minimal harmonic with respect

to Y on D. ⇤

As a consequence of Theorem 5.1.11, we conclude that for every nonnegative harmonic function

h for Y D, there exists a unique finite measure µ supported on @D such that

h(x) =

Z

@D

MY

D (x, z)µ(dz), x 2 D.

We call µ the Martin measure of h.

Furthermore, from Corollary 3.4.15, we get the following sharp estimates on Martin kernels for

bounded C1,1 domains.

Theorem 5.1.12. If D is a bounded C1,1
domain, there exists c = c(x0, D, d,�, ⇢,�) such that

c�1 1p
�(�D(x)�2)|x� z|d

 MY

D (x, z)  c
1p

�(�D(x)�2)|x� z|d
, x 2 D, z 2 @D.
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Chapter 6

Trace Estimate of Relativistic Stable
Processes

6.1 Introduction and Statement of the Main Results

For any m > 0 and ↵ 2 (0, 2), a relativistic ↵-stable process Xm on Rd with mass m is a Lévy

process with characteristic function given by

E [exp(i⇠ · (Xm

t �Xm

0 ))] = exp(�t((|⇠|2 +m2/↵)↵/2 �m)), ⇠ 2 Rd. (6.1.1)

The limiting case X0, corresponding to m = 0, is a (rotationally) symmetric ↵-stable process on

Rd which we will simply denote as X. The infinitesimal generator of Xm is m � (m2/↵
� �)↵/2.

Note that when m = 1, this infinitesimal generator reduces to 1� (1��)↵/2. Thus the 1-resolvent

kernel of the relativistic ↵-stable process X1 on Rd is just the Bessel potential kernel. When ↵ = 1,

the infinitesimal generator reduces to the so-called free relativistic Hamiltonian m �
p
��+m2.

The operator m�
p
��+m2 is very important in mathematical physics due to its application to

relativistic quantum mechanics.

In this chapter, we will be interested in the asymptotic behavior of the trace of the semigroup

associated with killed relativistic ↵-stable processes in open sets of Rd. The process Xm has a

transition density pm(t, x, y) = pm(t, y � x) given by the inverse Fourier transform

pm(t, x) = (2⇡)�d

Z

Rd

e�i⇠xe�t(|⇠|2+m
2/↵)↵/2+mtd⇠.
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For any open set D in Rd, the killed relativistic ↵-stable process Xm,D

t
is defined by

Xm,D

t
=

8
>><

>>:

Xm
t if t < ⌧m

D
,

@ if t � ⌧m
D
,

where ⌧m
D

= inf{t > 0 : Xm
t /2 D} is the first exit time of Xm from D. The process Xm,D

t
is a

strong Markov process with a transition density pm
D
(t, x, y) given by

pmD(t, x, y) = pm(t, x, y)� rmD (t, x, y),

with

rmD (t, x, y) = Ex

h
t > ⌧mD ; pm(t� ⌧mD , Xm

⌧
m

D

, y)
i
.

We denote by (Pm,D

t
: t � 0) the semigroup of Xm

t on L2(D): for any f 2 L2(D),

Pm,D

t
f(x) := Ex

h
f(Xm,D

t
)
i
=

Z

D

f(y)pmD(t, x, y)dy.

Whenever D is of finite volume, Pm,D

t
is a Hilbert-Schmidt operator mapping L2(D) into L1(D)

for every t > 0. By general operator theory, there exist an orthonormal basis of eigenfunctions

{�(m)
n }

1
n=1 for L2(D) and corresponding eigenvalues {�(m)

n }
1
n=1 of the generator of the semigroup

Pm,D

D
satisfying

0 < �(m)
1 < �(m)

2  �(m)
3  · · ·

with �(m)
n ! 1. By definition, we have

Pm,D

t
�(m)
n (x) = e��

(m)
n t�(m)

n (x), x 2 D, t > 0.

We also have

pmD(t, x, y) =
1X

n=1

e��
(m)
n t�(m)

n (x)�(m)
n (y).

�(0)n will be simply denoted by �n.

In the remainder of this chapter, we assume d � 2. We are interested in finding the asymptotic
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behavior, as t ! 0, of the trace defined by

Zm

D (t) =

Z

D

pmD(t, x, x)dx =
1X

n=1

e��
(m)
n t

Z

D

(�(m)
n )2(x)dx =

1X

n=1

e��
(m)
n t.

It is shown in [3] that for any open set D of finite volume, it holds that

lim
t!0

td/↵Z0
D = C1|D|, C1 =

!D�(d/↵)

(2⇡)d↵
. (6.1.2)

This is closely related to the growth of the eigenvalues of P 0,D
t

: if N0(�) is the number of eigenvalues

�j such that �j  �, then it follows from the classical Karamata Tauberian theorem (see for example

[29]) that

N0(�) ⇠
C1|D|

�(d/↵+ 1)
�d/↵, as �! 1. (6.1.3)

This is the analogue for killed stable processes of the celebrated Weyl’s asymptotic formula for

the eigenvalues of the Dirichlet Laplacian. We will see later in this chapter that exactly the same

formula is true for relativistic stable processes. That is, the first term in the expansion of Zm

D
(t) is

the same as that of Z0
D
(t) and (6.1.3) is also true for relativistic stable processes.

Our main goal in this chapter is to get the asymptotic expansion of Zm

D
(t) as t ! 0 under some

additional assumptions on the smoothness of the boundary of D. Our work is inspired by the

paper [14] for Brownian motion and the papers [3, 4] for stable processes. The first theorem is an

asymptotic expansion of Zm

D
(t) with error bound of order t2/↵t�d/↵ in C1,1 open sets. To state the

result precisely, we need some definitions. Recall that an open set D in Rd is said to be a (uniform)

C1,1 open set if there are (localization radius) R > 0 and ⇤0 such that for every z 2 @D, there exist

a C1,1 function � = �z : Rd
! R satisfying �(0, · · · , 0) = 0, r�(0) = (0, . . . , 0), |r�(x)�r�(y)| 

⇤0|x� z| and an orthonormal coordinate system CSz : y = (y1, · · · , yd�1, yd) := (ỹ, yd) with origin

at z such that B(z,R) \ D = {y = (ỹ, yd) 2 B(0, R) in CSz : yd > �(ỹ)}. For x 2 Rd, let �D(x)

denote the Euclidean distance between x and Dc and �@D(x) the Euclidean distance between x

and @D. It is well known that a C1,1 open set D satisfies both the uniform interior ball condition

and the uniform exterior ball condition: there exists r0 < R such that for every x 2 D with

�@D(x) < r0 and y 2 Rd
\ D̄ with �@D(y) < r0, there are zx, zy 2 @D so that |x � zx| = �@D(x),
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|y�zy| = �@D(y) and that B(x0, r0) ⇢ D and B(y0, r0) ⇢ Rd
\D̄, where x0 = zx+r0(x�zx)/|x�zx|

and y0 = zy + r0(y� zy)/|y� zy|. In fact, D is a C1,1 open set if and only if D satisfies the uniform

interior ball condition and the uniform exterior ball condition (see [1, Lemma 2.2]). In this chapter

we call the pair (r0,⇤0) the characteristics of the C1,1 open set D. For any open set D in Rd, we

use |D| to denote the d-dimensional Lebesgue measure of D and H
d�1(@D) to denote the (d� 1)-

dimensional Hausdor↵ measure of @D. When D is a C1,1 open set, Hd�1(@D) is equal to the surface

measure |@D| of @D. We will use H to denote the half space {x = (x1, x2, · · · , xd) : x1 > 0}.

The following is the the first main result of this chapter.

Theorem 6.1.1. Suppose that D is a bounded C1,1
open set in Rd

. Let k be the largest integer

such that k < 2
↵
. Then the trace Zm

D
(t) admits the following expansion

Zm

D (t) = C1|D|t�
d

↵ � C2|@D|t
1�d

↵ +
!d�(d/↵)|D|

(2⇡)d↵
t�

d

↵

kX

n=1

mn

n!
tn +O(

t2/↵

td/↵
),

where C1 is given in (6.1.2) and

C2 =

Z 1

0
r0H(1, (r, 0̃), (r, 0̃))dr.

The second main result of the chapter is an asymptotic expansion of Zm

D
(t) with error bound

of order t1/↵t�d/↵ in Lipschitz open sets. Before we state the second main result, we recall the

definition of Lipschitz open sets. An open set D in Rd is called a Lipschitz open set if there exist

constants R0 (localization radius) and � > 0 (Lipschitz constant) such that for every z 2 @D there

exist a Lipschitz function F : Rd�1
! R with Lipschitz constant � and an orthornormal coordinate

system y = (y1, · · · , yd) such that D \ B(z,R0) = {y : yd > F (y1, · · · , yd�1)} \ B(z,R0). Here is

the second main result.

Theorem 6.1.2. Suppose that D is a bounded Lipschitz open set in Rd
. Let j be the largest integer

such that j  1
↵
. Then the trace Zm

D
(t) admits the following expansion

td/↵Zm

D (t) = C1|D|� C2H
d�1(@D)t1/↵ +

!d�(d/↵)|D|

(2⇡)d↵

jX

n=1

mn

n!
tn + o(t1/↵),

where C1 and C2 are the same as in Theorem 6.1.1.
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Remark 6.1.3. Note that the first term in the expansion of Zm

D
(t) is exactly the same as in the

case of Z0
D
(t). However the rest of the terms are quite di↵erent. We note here that the coe�cient

of the term of order t1/↵t�d/↵
is the same in the stable process case, but in the case of relativistic

stable processes for C1,1,
open sets, there are k intermediate terms of the form tkt�d/↵

, where k

is a positive integer less than 2/↵. Since 0 < ↵ < 2, there is at least one more term involved in

the asymptotic expansion of Zm

D
(t) than that of Z0

D
(t) up to order of t2/↵t�d/↵

. For Lipschitz open

sets, when ↵  1 there are j intermediate terms of the form tjt�d/↵
, where j is an integer that is

less than or equal to 1/↵.

Remark 6.1.4. In [5], an asymptotic expansion for the trace of relativisitic ↵-stable processes in

bounded C1,1
open sets was established. Compared with Theorem 6.1.1, the expansion of [5] does

not contain the intermediate terms.

The rest of the chapter is organized as follows. In Section 6.2, we recall some basic facts about

relativistic stable processes and present several preliminary results which will be used in Sections

6.3 and 6.4. Theorem 6.1.1 is proved in Section 6.3, while Theorem 6.1.2 is proved in Section 6.4.

Throughout this chapter, we will use c to denote a positive constant depending (unless otherwise

explicitly stated) only on d and ↵ but whose value may change from line to line, even within a single

line. In this chapter, the big O notation f(t) = O(g(t)) always means that there exist constants C

and t0 > 0 such that f(t)  Cg(t) for all 0 < t < t0.

6.2 Preliminaries

In this section, we recall some basic facts about relativistic ↵-stable processes. From (6.1.1), one

can easily see that Xm has the following approximate scaling property:

{m�1/↵(X1
mt �X1

0 ), t � 0} has the same law as {Xm

t �Xm

0 , t � 0}.

In terms of transition densities, this approximate scaling property can be written as

pm(t, x, y) = md/↵p1(mt,m1/↵x,m1/↵y). (6.2.1)
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It is well known that the transition density pm
D
(t, x, y) of Xm,D is continuous on (0,1)⇥D⇥D.

Since both pm(t, x, y) and pm
D
(t, x, y) are continuous on (0,1)⇥D ⇥D, rm

D
(t, x, y) = pm(t, x, y)�

pm
D
(t, x, y) is also continuous there. pm

D
(t, x, y) and rm

D
(t, x, y) also enjoy the following approximate

scaling property:

p1
m1/↵D

(t, x, y) = m�d/↵pmD(t/m, x/m1/↵, y/m1/↵), (6.2.2)

r1
m1/↵D

(t, x, y) = m�d/↵rmD (t/m, x/m1/↵, y/m1/↵). (6.2.3)

The Lévy measure of the relativistic ↵-stable process Xm has a density

Jm(x) = jm(|x|) :=
↵

2�(1� ↵/2)

Z 1

0
(4⇡u)�d/2e�|x|2/4ue�m

2/↵
uu�(1+↵/2)du,

which is continuous and radially decreasing on Rd
\ {0} (see [49, Lemma 2]). Put Jm(x, y) :=

jm(|x� y|). Let A(d,�↵) := ↵2↵�1⇡�d/2�(d+↵

2 )�(1� ↵

2 )
�1. Using change of variables twice, first

with u = |x|2v then with v = 1/s, we get

Jm(x, y) = A(d,�↵)|x� y|�d�↵ (m1/↵
|x� y|), (6.2.4)

where

 (r) := 2�(d+↵)�

✓
d+ ↵

2

◆�1 Z 1

0
s(d+↵)/2�1e�s/4�r

2
/sds, (6.2.5)

which satisfies  (0) = 1 and

c�1
1 e�rr(d+↵�1)/2

  (r)  c1e
�rr(d+↵�1)/2 on [1,1)

for some c1 > 1 (see [26, pp. 276-277] for details). We denote the Lévy density of X by

J(x, y) := J0(x, y) = A(d,�↵)|x� y|�d�↵.

Note that from (6.2.4) and (6.2.5) we see that for any x 2 Rd
\ {0}

jm(|x|)  j0(|x|).
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It follows from [20, Theorem 4.1.] that, for any positive constants M and T there exists a constant

c > 1 such that for all m 2 (0,M ], t 2 (0, T ], and x, y 2 Rd we have

c�1
⇣
t�d/↵

^ tJm(x, y)
⌘
 pm(t, x, y)  c

⇣
t�d/↵

^ tJm(x, y)
⌘
. (6.2.6)

We will need a simple lemma from [32] about the relationship between rm
D
(t, x, y) and r0

D
(t, x, y).

The lemma is true in much more general situations but we just need it when one of the processes

is a symmetric ↵-stable process and the other is a relativistic ↵-stable process.

Lemma 6.2.1. Suppose that X and Y are two Lévy processes with Lévy densities JX
and JY

,

respectively. Suppose that � = JX
� JY

is nonnegative on Rd
with

R
Rd �(x)dx = ` < 1 and D is

an open set. Then for any x 2 D and t > 0,

pYD(t, x, ·)  e`tpXD(t, x, ·) a.s.

If, in addition, pX(t, ·) and pY (t, ·) are continuous, then we have for x, y 2 D,

rYD(t, x, y)  e2`trXD (t, x, y).

The next proposition is the (generalized) Ikeda-Watanabe formula for the relativistic stable

process, which describes the joint distribution of ⌧m
D

and Xm

⌧
m

D

.

Proposition 6.2.2 (Proposition 2.7 [45]). Assume that D is an open subset of Rd
and A is a Borel

set such that A ⇢ Dc
\ @D. If 0  t1 < t2 < 1, then

Px

⇣
Xm

⌧
m

D

2 A, t1 < ⌧mD < t2
⌘
=

Z

D

Z
t2

t1

pmD(s, x, y)ds

Z

A

Jm(y, z)dzdy, x 2 D.

Now we state a simple lemma about the upper bound of rm
D
(t, x, y), which is an analogue of [3,

Lemma 2.1] for stable processes.

Lemma 6.2.3. Let M,T be positive constants. Then there exists a constant c = c(d,↵,M, T ) such
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that for all m 2 (0,M ] and t 2 (0, T ] we have

rmD (t, x, y)  c

 
t�d/↵

^
t (m1/↵�D(x))

�D(x)d+↵

!
.

Proof. Since  is eventually decreasing and  (0) = 1 > 0, there exists a constant c1 > 0 such that

 (x)  c1 (y) for all 0  y  x. Now from the definition of rm
D
(t, x, y) and (6.2.6) we have

rmD (t, x, y) = rmD (t, y, x)

 Ey

h
t > ⌧mD ; pm(t� ⌧mD , Xm

⌧
m

D

, x)
i

 Ey

"
c

 
t�d/↵

^

t (m1/↵
|x�Xm

⌧
m

D

|)

|x�Xm

⌧
m

D

|d+↵

!#

 cc1

 
t�d/↵

^
t (m1/↵�D(x))

�D(x)d+↵

!
.

⇤

We will need two results from [3]. The first result is about the di↵erence pm
F
(t, x, y)� pm

D
(t, x, y)

when D ⇢ F . The proof in [3], given for stable processes, mainly uses the strong Markov property

and it works for all strong Markov processes with transition densities.

Proposition 6.2.4 (Proposition 2.3 [3]). Let D and F be open sets in Rd
such that D ⇢ F . Then

for any x, y 2 Rd
we have

pmF (t, x, y)� pmD(t, x, y) = Ex

h
⌧mD < t,Xm

⌧
m

D

2 F \D : pmF (t� ⌧mD , Xm

⌧
m

D

, y)
i
.

Now we introduce some notation. Recall that if D is a C1,1 open set with characteristics (r0,⇤0),

then for every x 2 D with �@D(x) < r0 and y 2 Rd
\ D̄ with �@D(y) < r0, there are zx, zy 2 @D

so that |x � zx| = �@D(x), |y � zy| = �@D(y) and that B(x0, r0) ⇢ D and B(y0, r0) ⇢ Rd
\ D̄,

where x0 = zx + r0(x� zx)/|x� zx| and y0 = zy + r0(y � zy)/|y � zy|. Let H(x) be the half-space

containing B(x0, r0) such that @H(x) contains zx and is perpendicular to the segment zxzy. The

next proposition says that, in case of the symmetric ↵-stable process, for small t, the quantity

r0
D
(t, x, x) can be replaced by r0

H(x)(t, x, x), which was a very crucial step in proving the main

result in [3].
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Proposition 6.2.5 (Proposition 3.1 of [3]). Let D ⇢ Rd
be a C1,1

open set with characteristics

(r0,⇤0). Then, for any x with �@D(x) < r0/2 and t > 0 with t1/↵  r0/2, we have

���r0D(t, x, x)� r0
H(x)(t, x, x)

��� 
ct1/↵

r0td/↵

0

@
 

t1/↵

�@D(x)

!
d+↵

2 �1

^ 1

1

A .

We will need some facts about the “stability” of the surface area of the boundary of C1,1 open

sets. The following lemma is [7, Lemma 5].

Lemma 6.2.6. Let D be a bounded C1,1
open set in Rd

with characteristic (r0,⇤0) and define for

0  q < r0,

Dq = {x 2 D : �D(x) > q}.

Then ✓
r0 � q

r0

◆
d�1

|@D|  |@Dq| 

✓
r0

r0 � q

◆
d�1

|@D|, 0  q < r0.

The following result is [3, Corollary 2.14].

Lemma 6.2.7. Let D be a bounded C1,1
open set in Rd

with characteristic (r0,⇤0). For any

0 < q  r0/2, we have

(1) 2�d+1
|@D|  |@Dq|  2d�1

|@D|,

(2) |@D| 
2d|D|
r0

,

(3) ||@Dq|� |@D|| 
2ddq|@D|

r0


22ddq|D|
r
2
0

.

6.3 Proof for Bounded C1,1 Open Sets

We first prove that limt!0 t
d

↵Zm

D
(t) exists and identify the limit.

Lemma 6.3.1. The limit limt!0 t
d

↵Zm

D
(t) exists and is equal to C1|D|, where C1 is the constant in

Theorem 6.1.1.
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Proof. By definition,

td/↵Zm

D (t) = td/↵
Z

D

pmD(t, x, x)dx

= td/↵
✓Z

D

pm(t, x, x)dx�

Z

D

rmD (t, x, x)dx

◆
. (6.3.1)

For the first integral on the right hand side of (6.3.1), note that, by the approximate scaling

property (6.2.2) and the dominated convergence theorem, we have, as t ! 0,

td/↵
✓Z

D

pm(t, x, x)dx

◆
=

Z

D

ptm(1, x, x)dx = |D|ptm(1, 0)

! |D| · p0(1, 0) = |D| ·
�(d/↵)!d

(2⇡)d↵
.

It remains to show that limt!0 td/↵
R
D
rm
D
(t, x, x)dx = 0. By Lemma 6.2.3 we have that

td/↵rmD (t, x, y)  c, (t, x, y) 2 (0, 1]⇥D ⇥D,

for some c > 0. Hence we have by the monotone convergence theorem,

td/↵
Z

D\D
t
1/2↵

rmD (t, x, x) ! 0 as t ! 0.

For x 2 D
t1/2↵ we have by Lemma 6.2.3 again for t 2 (0, 1],

rmD (t, x, x)  c t
1
2+

d

2↵ , x 2 D
t1/2↵ .

Hence limt!0 td/↵
R
D

t
1/2↵

rm
D
(t, x, x)dx = 0. ⇤

It follows from Lemma 6.3.1 that if Nm(�) denotes the number of eigenvalues �(m)
j

such that

�m
j

 �, then it follows from the classical Karamata Tauberian theorem (see for example [29]) that

Nm(�) ⇠
C1|D|

�(d/↵+ 1)
�d/↵, as �! 1.

This is the analogue for killed relativistic stable processes of the celebrated Weyl’s asymptotic
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formula for the eigenvalues of the Dirichlet Laplacian and it is already proved in [5] (see [5, (1.10)]).

This result has been known at least since 2009, see [5, Remark 1.2].

Now we focus on identifying the next terms in Zm

D
(t). For this, we need to find the order of t in

Zm

D
(t)� C1t

� d

↵ . Note that by Lemma 6.3.1,

Zm

D (t)� C1t
�d/↵ =

Z

D

pmD(t, x, x)� p0(t, x, x)dx

=

Z

D

�
pm(t, x, x)� p0(t, x, x)

�
dx�

Z

D

rmD (t, x, x)dx.

The next lemma gives the orders of t in pm(t, x, x)� p0(t, x, x) up to t
2
↵ t�

d

↵ .

Lemma 6.3.2. Let k be the largest integer such that k < 2
↵
. Then we have

pm(t, x, x)� p0(t, x, x) = t�d/↵
!d�(d/↵)

(2⇡)d↵

kX

n=1

mn

n!
tn +O(t2/↵t�d/↵).

Proof. By the scaling property (6.2.1) we have

pm(t, x, x)� p0(t, x, x) = pm(t, 0)� p0(t, 0)

= t�d/↵
�
ptm(1, 0)� p0(1, 0)

�

= t�d/↵(2⇡)�d

Z

Rd

e�(|⇠|2+(mt)2/↵)↵/2+mt
� e�|⇠|↵d⇠.

Note that for any x � 0 we have (1 + x)↵/2  1 + ↵

2x. Thus

⇣
|⇠|2 + (mt)2/↵

⌘
↵/2

= |⇠|↵
 
1 +

(mt)2/↵

|⇠|2

!
↵/2

 |⇠|↵
 
1 +

↵

2

(mt)2/↵

|⇠|2

!
.
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Consequently

0  e�|⇠|↵
� e�(|⇠|

2+(mt)2/↵)↵/2

 e�|⇠|↵
� e

�|⇠|↵
✓
1+↵

2
(mt)2/↵

|⇠|2

◆

= e�|⇠|↵
 
1� e

�↵

2
(mt)2/↵

|⇠|2�↵

!

 e�|⇠|↵
 
↵

2

(mt)2/↵

|⇠|2�↵

!
,

where we used 1� e�x
 x for all x � 0 in the last inequality above. Therefore

0 

Z

Rd

e�(|⇠|
2+(mt)2/↵)↵/2

+mt
� e�|⇠|↵d⇠



Z

Rd

����e
�(|⇠|2+(mt)2/↵)↵/2

+mt
� e�|⇠|↵emt + e�|⇠|↵emt

� e�|⇠|↵
���� d⇠



Z

Rd

����e
�(|⇠|2+(mt)2/↵)↵/2

+mt
� e�|⇠|↵emt

���� d⇠ +
Z

Rd

���e�|⇠|↵emt
� e�|⇠|↵

��� d⇠



Z

Rd

emte�|⇠|↵
 
↵

2

(mt)2/↵

|⇠|2�↵

!
d⇠ +

Z

Rd

e�|⇠|↵ �emt
� 1

�
d⇠

= emt
↵

2
(mt)2/↵

Z

Rd

e�|⇠|↵

|⇠|2�↵
d⇠ +

1X

n=1

(mt)n

n!

Z

Rd

e�|⇠|↵d⇠.

Since k + j � 2/↵ for any j � 1, we have
1X

n=k+1

(mt)n

n!
= O(t2/↵). Therefore

Z

Rd

✓
e�(|⇠|

2+(mt)2/↵)↵/2
+mt

� e�|⇠|↵
◆
d⇠ = O(t2/↵) +

!d�(d/↵)

↵

kX

n=1

(mt)n

n!

and

pm(t, x, x)� p0(t, x, x) = t�d/↵
!d�(d/↵)

(2⇡)d↵

kX

n=1

mn

n!
tn +O(t2/↵t�d/↵).

⇤

Now we try to find the orders of t in the expansion of
R
D
rm
D
(t, x, x)dx up to the order of t

2
↵ t�

d

↵ .

For this, we need to assume some regularity condition on the boundary ofD. Hence in the remainder

of this section we assume that D is a bounded C1,1 open set with characteristic (r0,⇤0). We also

assume that t1/↵ 
r0
2 .

We first deal with the contribution in Dr0/2.
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Lemma 6.3.3. There exists c = c(d,↵) > 0 such that

Z

Dr0/2

rmD (t, x, x)dx  ce2mt
|D|t2/↵

r20t
d/↵

.

Proof. It follows from Lemma 6.2.1 that rm
D
(t, x, y)  e2mtr0

D
(t, x, y). By [3, (3.2)] we know that

Z

Dr0/2

r0D(t, x, y)dx 
c|D|t2/↵

r20t
d/↵

.

The desired assertion follows immediately. ⇤

Lemma 6.3.4. There exists c = c(d,↵) > 0 such that

rmD (t, x, x)� rm
H(x)(t, x, x)  ce2mt

t1/↵

td/↵

0

@
 

t1/↵

�D(x)

!
d+↵

2 �1

^ 1

1

A

and Z

D\Dr0/2

⇣
rmD (t, x, x)� rm

H(x)(t, x, x)
⌘
dx  ce2mt

t2/↵

td/↵
.

Proof. If the first assertion of the lemma is right, then it is easy to see that

Z

D\Dr0/2

0

@
 

t1/↵

�D(x)

!
d+↵

2 �1

^ 1

1

A dx  ct1/↵.

Hence we focus on proving the first assertion. By [3, (3.4)], we know that

r0D(t, x, x)� r0
H(x)(t, x, x)  c

t1/↵

td/↵

0

@
 

t1/↵

�D(x)

!
d+↵

2 �1

^ 1

1

A .

Recall that Jm(x)  J0(x) for any x 2 Rd
\{0}. Now it follows from the generalized Ikeda-Watanabe
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formula and Lemma 6.2.1 that

rmD (t, x, x)� rm
H(x)(t, x, x)

= Ex

h
t > ⌧mD , Xm

⌧
m

D

2 H(x) \D; pm
H(x)(t� ⌧mD , Xm

⌧
m

D

, x)
i

=

Z

D

Z
t

0
pmD(s, x, y)ds

Z

H(x)\D
Jm(y, z)pm

H(x)(t� s, z, x)dzdy

 e2mt

Z

D

Z
t

0
p0D(s, x, y)ds

Z

H(x)\D
J0(y, z)p0

H(x)(t� s, z, x)dzdy

= e2mtEx

h
t > ⌧0D, X⌧

0
D

2 H(x) \D; p0
H(x)(t� ⌧0D, X⌧

0
D

, x)
i

= e2mt

⇣
r0D(t, x, x)� r0

H(x)(t, x, x)
⌘

 ce2mt
t1/↵

td/↵

 
(
t1/↵

�D(x)
)d+

↵

2 �1
^ 1

!
.

⇤

Lemma 6.3.5. There exists c = c(d,↵) > 0 such that

Z

D\Dr0/2

rm
H(x)(t, x, x)dx� t1/↵t�d/↵

Z r0
2t1/↵

0
|@D|f tm

H (1, u)du  ct2/↵t�d/↵.

Proof. Using the scaling relation (6.2.3) we get

Z

D\Dr0/2

rm
H(x)(t, x, x)dx

=

Z
r0/2

0
|@Du|f

m

H (t, u)du

=

Z
r0/2

0
|@Du|t

�d/↵f tm

H (1, u/t1/↵)du

= t1/↵t�d/↵

Z
r0/2t1/↵

0
|@D

ut1/↵ |f
tm

H (1, u)du.
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It follows from Corollary 6.2.7 that ||@Dq|� |@D|| 
2ddq|@D|

r0


22ddq|D|
r
2
0

for any q  r0/2. Hence

�����

Z

D\Dr0/2

rm
H(x)(t, x, x)� t1/↵t�d/↵

Z r0
2t1/↵

0
|@D|f tm

H (1, u)du

�����

 t1/↵t�d/↵

Z r0
2t1/↵

0
||@D

ut1/↵ |� |@D|| f tm

H (1, u)du

 c1t
2/↵t�d/↵

Z 1

0
uf tm

H (1, u)du

 c2t
2/↵t�d/↵.

⇤

Lemma 6.3.6. There exists c = c(d,↵) > 0 such that

t1/↵t�d/↵

Z 1

0
|@D|f tm

H (1, u)du� t1/↵t�d/↵

Z r0
2t1/↵

0
|@D|f tm

H (1, u)du  ct2/↵t�d/↵.

Proof. It follows from Lemma 6.2.1 that

t1/↵t�d/↵

Z 1

0
|@D|f tm

H (1, u)du� t1/↵t�d/↵

Z r0
2t1/↵

0
|@D|f tm

H (1, u)du

= t1/↵t�d/↵

Z 1

r0
2t1/↵

|@D|f tm

H (1, u)du

= t1/↵t�d/↵
|@D|

Z 1

r0
2t1/↵

f tm

H (1, u)du

 e2mtt1/↵t�d/↵
|@D|

Z 1

r0
2t1/↵

f0
H(1, u)du.

For q � r0/(2t1/↵) we have f0
H
(1, q)  cq�d�↵

 cq�2. Hence

Z 1

r0
2t1/↵

f0
H(1, u)du  c

Z 1

r0
2t1/↵

dq

q2
 c

t1/↵

r0

and the result now follows. ⇤

Lemma 6.3.7. lim
t#0

Z 1

0
f tm

H (1, u)du =

Z 1

0
f0
H(1, u)du.
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Proof. This follows immediately from the continuity of m 7! rm
D
(t, x, y) and the dominated

convergence theorem. ⇤

Proof of Theorem 6.1.1 Combining Lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, and 6.3.7,

we immediately arrive at Theorem 6.1.1. ⇤

6.4 Proof for Bounded Lipschitz Open Sets

In this section we always assume that D is a bounded Lipschitz open set in Rd. The argument

of this section is similar to previous section and [4]. We will follow the argument in [4] closely,

making necessary modifications for relativistic stable processes. Note that even though the main

theorem in [4] is stated for a Lipschitz domain, it remains true for a bounded Lipschitz open set.

First we need two technical facts which play crucial roles later. The first proposition is [4,

Proposition 2.9] and we will state it here for reader’s convenience.

Proposition 6.4.1 (Proposition 2.9. [4]). Suppose that f : (0,1) ! [0,1) is continuous and

satisfies f(r)  c(1 ^ r��) for some � > 1. Furthermore, suppose that for any 0 < R1 < R2 < 1,

f is Lipschitz on [R1, R2]. Then we have

lim
⌘!0+

1

⌘

Z

D

f

✓
�D(x)

⌘

◆
dx = H

d�1(@D)

Z 1

0
f(r)dr.

Lemma 6.4.2. Suppose that f : (0,1) ! [0,1) is continuous and satisfies f(r)  c1(1^ r��) for

some � > 1. Furthermore, suppose that for any 0 < R1 < R2 < 1, f is Lipschitz on [R1, R2]. Let

{f⌘ : ⌘ > 0} be continuous functions from (0,1) to [0,1) such that, for any 0 < L < M < 1,

lim
⌘!0

f⌘(r) = f(r) uniformly for r 2 [L,M ]. Suppose that there exists c2 > 0 such that f⌘(r)  c2f(r)

for all ⌘  1. Then we have

lim
⌘!0+

1

⌘

Z

D

f⌘

✓
�D(x)

⌘

◆
dx = H

d�1(@D)

Z 1

0
f(r)dr.

Proof. Let  ⌘(r) = ⌘�1
|{x 2 D : �D(x) < ⌘r}|. Note (cf. proof of [14, Proposition 1.1]) that
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 ⌘(r)  c for all ⌘, r > 0 and that

⌘�1
Z

D

f

✓
�D(x)

⌘

◆
dx =

Z 1

0
f(r)d ⌘(r),

and

⌘�1
Z

D

f⌘

✓
�D(x)

⌘

◆
dx =

Z 1

0
f⌘(r)d ⌘(r).

It was shown in [4, Proposition 2.9.] that, for any 0 < R1 < R2 < 1 and ⌘ > 0, f satisfies

Z
R1

0
f(r)d ⌘(r)  cR1, (6.4.1)

Z 1

R2

f(r)d ⌘(r)  c⌘��1 + cR1��

2 , (6.4.2)

lim
⌘!0+

Z
R2

R1

f(r)d ⌘(r) = H
d�1(@D)

Z
R2

R1

f(r)dr.

Since f⌘
 c2f for ⌘  1 we have the same inequalities as (6.4.1) and (6.4.2) for f⌘, ⌘  1. Hence

it is enough to show that

lim
⌘!0+

Z
R2

R1

f⌘(r)d ⌘(r) = H
d�1(@D)

Z
R2

R1

f(r)dr.

For any partition R1 = x0 < x1 < · · · < xn = R2 of [R1, R2], we have

�����

nX

i=1

f⌘(xi) ( n(xi)�  n(xi�1))�
nX

i=1

f(xi) ( n(xi)�  n(xi�1))

�����

=
nX

i=1

|f⌘(xi)� f(xi)| ( n(xi)�  n(xi�1))

 k f⌘
� f kL1[R1,R2]  ⌘(R2).

Note that for any ⌘ > 0 the function r !  ⌘(r) is nondecreasing and for any ⌘ > 0, r > 0 we have

 ⌘(r)  cr for some constant c. Since f⌘
! f uniformly on r 2 [R1, R2], taking supremum for all

possible partitions gives

lim
⌘!0+

Z
R2

R1

f⌘(r)d ⌘(r) = lim
⌘!0+

Z
R2

R1

f(r)d ⌘(r) = H
d�1(@D)

Z
R2

R1

f(r)dr.
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⇤

Lemma 6.4.3. For any 0 < L < M < 1, pm(t, x, y) converges uniformly to p0(t, x, y) as m ! 0

for (t, x, y) 2 [L,M ]⇥ Rd
⇥ Rd

.

Proof. Note that

��pm(t, x, y)� p0(t, x, y)
�� =

����(2⇡)
�d

Z

Rd

e�i⇠(y�x)
⇣
e�t((|⇠|2+m

2/↵)↵/2�m)
� e�t|⇠|↵

⌘
d⇠

����

 (2⇡)�d

Z

Rd

���e�i⇠(y�x)
⇣
e�t((|⇠|2+m

2/↵)↵/2�m)
� e�t|⇠|↵

⌘��� d⇠

 (2⇡)�d

Z

Rd

e�t((|⇠|2+m
2/↵)↵/2�m)

� e�t|⇠|↵d⇠

= (2⇡)�d(pm(t, 0)� p0(t, 0)).

Now it follows from Lemma 6.3.2 that for t 2 [L,M ] and x, y 2 Rd,

��p0(t, x, y)� pm(t, x, y)
��

 t�d/↵(2⇡)�demt
↵

2
(mt)2/↵

Z

Rd

e�|⇠|↵

|⇠|2�↵
d⇠ +

1X

n=1

(mt)n

n!

Z

Rd

e�|⇠|↵d⇠

 L�d/↵(2⇡)�d
↵

2
(mM)2/↵

Z

Rd

e�|⇠|↵

|⇠|2�↵
d⇠ +

1X

n=1

(mM)n

n!

Z

Rd

e�|⇠|↵d⇠.

The last quantity above converges to 0 as m ! 0. ⇤

For convenience, we define the following notation.

fm

H (t, r) := rmH (t, (r, 0̃), (r, 0̃)), r > 0.

Lemma 6.4.4. For any 0 < L < M < 1 and m > 0,

lim
t!0

f tm

H (1, r) = f0
H(1, r), uniformly in r 2 [L,M ],

that is, given " > 0 there exists t0 > 0 such that for 0  t  t0 we have

sup
r2[L,M ]

��rtmH (1, (r, 0̃), (r, 0̃))� r0H(1, (r, 0̃), (r, 0̃))
�� < ".
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Proof. Recall that r0
H
(t, x, y) = Ex[⌧0H < t, p0(t� ⌧0

H
, X

⌧
0
H

, y)] and rm
H
(t, x, y) = Ex[⌧mH < t, pm(t�

⌧m
H
, Xm

⌧
m

H

, y)]. It is well known that

p0(t, x, y) ⇣ t�d/↵
^

t

|x� y|d+↵
.

Since |X0
⌧H

� (r, 0̃)| > L, we have, together with Lemma 6.2.1,

p0(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))  c
1� ⌧0

H

Ld+↵
,

ptm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))  cetm
1� ⌧ tm

H

Ld+↵
.

Now take �1 small so that

E(r,0̃)

h
1� �1  ⌧0H < 1, p0(1� ⌧0H , X0

⌧
0
H

, (r, 0̃))
i
< ", (6.4.3)

E(r,0̃)

h
1� �1  ⌧ tmH < 1, ptm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i
< ". (6.4.4)

Now let V m be a Lévy process with Lévy density � = J � Jm and define Tm := inf{t > 0 :

V m
t 6= 0}. Then V m is a compound Poisson process and Tm is an exponential random variable

with parameter m and independent of X (See [49]). Then we have

E(r,0̃)

h
⌧ tmH < 1� �1, p

tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i

= E(r,0̃)

h
T tm > 1, ⌧ tmH < 1� �1, p

tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i

+ E(r,0̃)

h
T tm

 1, ⌧ tmH < 1� �1, p
tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i
.

Since ptm(1� ⌧ tm
H

, Xtm

⌧
tm

H

, (r, 0̃))  c e
mt

Ld+↵
, we have

E(r,0̃)

h
T tm

 1, ⌧ tmH < 1� �1, p
tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i
 c

emt

Ld+↵
(1� e�mt). (6.4.5)

Similarly we also have

E(r,0̃)

⇥
T tm

 1, ⌧0H < 1� �1, p
0(1� ⌧0H , X0

⌧H
, (r, 0̃))

⇤
 c

1

Ld+↵
(1� e�mt). (6.4.6)

87



Take t1 > 0 such that (6.4.5) and (6.4.6) is less than " for all t  t1. Next note that for T tm > 1

and ⌧ tm
H

< 1, we have ⌧ tm
H

= ⌧0
H

and Xtm

⌧
tm

H

= X0
⌧
0
H

. Hence it follows that

|E(r,0̃)

h
T tm > 1, ⌧ tmH < 1� �1, p

tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i

�E(r,0̃)

h
T tm > 1, ⌧0H < 1� �1, p

0(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))
i
|

 E(r,0̃)

h
T tm > 1, ⌧0H < 1� �1, |p

tm(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))� p0(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))|
i

 sup
s2[�1,1],x,y2Rd

|ptm(s, x, y)� p0(s, x, y)|. (6.4.7)

It follows from Lemma 6.4.3 that there exists t2 > 0 such that sups2[�1,1],x,y2Rd |ptm(s, x, y) �

p0(s, x, y)| < " for 0  t  t2. Now let t0 = t1 ^ t2. Then for any 0  t  t0 we have from (6.4.3),

(6.4.4), (6.4.5), (6.4.6), and (6.4.7)

|rtmH (1, (r, 0̃), (r, 0̃))� r0H(1, (r, 0̃), (r, 0̃))|

= |E(r,0̃)[⌧
tm

H < 1, ptm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))]� E(r,0̃)[⌧
0
H < 1, p0(1� ⌧0H , X0

⌧
0
H

, (r, 0̃))]|

 |E(r,0̃)[1 > ⌧ tmH > 1� �1, ⌧
tm

H < 1, ptm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))]|+

|E(r,0̃)[1 > ⌧0H > 1� �1, ⌧
0
H < 1, p0(1� ⌧0H , X0

⌧
0
H

, (r, 0̃))]|+

|E(r,0̃)

h
T tm

 1, ⌧ tmH < 1� �1, p
tm(1� ⌧ tmH , Xtm

⌧
tm

H

, (r, 0̃))
i
|+

|E(r,0̃)

h
T tm

 1, ⌧0H < 1� �1, p
0(1� ⌧0H , X0

⌧
0
H

, (r, 0̃))
i
|

+|E(r,0̃)

h
T tm > 1, ⌧0H < 1� �1, p

tm(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))
i

�E(r,0̃)

h
T tm > 1, ⌧0H < 1� �1, p

0(1� ⌧0H , X0
⌧
0
H

, (r, 0̃))
i
|

< 5".

⇤

As in [4], we need to divide the Lipschitz open set D into a good set and a bad set. We recall

several geometric facts about the Lipschitz open set.

Definition 6.4.5. Let ", r > 0. We say that G ⇢ @D is (", r)-good if for each point p 2 G, the
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unit inner normal ⌫(p) exists and

B(p, r) \ @D ⇢ {x : |(x� p) · ⌫(p)| < "|x� p|}.

If G is an (", r)-good subset of @D, then using this definition we can construct a good subset G

of the points near the boundary:

G =
[

p2G
�r(p, "),

where �r(p, ") = {x : (x� p) · ⌫(p) >
p
1� "2|x� p|} \B(p, r).

The next lemma is [4, Lemma 2.7] and it says the measure of the set of the bad points near

the boundary is small. Note that even though [4, Lemma 2.7] is stated for a bounded Lipschitz

domain, the proof remains true for a bounded Lipschitz open set.

Lemma 6.4.6 (Lemma 2.7 in [4]). Suppose " 2 (0, 1/2), r > 0 and that G is a measurable (", r)-

good subset of @D. There exists s0(@D,G) > 0 such that for all s < s0

|{x 2 D : �D(x) < s} \ G|  s
h
H

d�1(@D \G) + "
⇣
3 +H

d�1(@D)
⌘i

.

The next lemma is about the existence of a good subset G ⇢ @D. Again the lemma remains true

for a bounded Lipschitz open set D.

Lemma 6.4.7 (Lemma 2.8 in [4]). For any " > 0 there exists r > 0 such that an (", r)-good set

G ⇢ @D exists and

H
d�1(@D \G) < ".

The two lemmas above imply that

|{x 2 D : �D(x) < s} \ G|  s"
⇣
4 +H

d�1(@D)
⌘
.

For any " 2 (0, 1/4), we fix the (", r)-good set from Lemma 6.4.7 and construct G from G. We

choose r to be smaller than the minimal distances between (finitely many) components of D. For

any x 2 G, there exists p(x) 2 @D such that x 2 �r(p(x), "). Next we define inner and outer cones
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as follows

Ir (p(x)) = {y : (y � p(x)) · ⌫ (p(x)) > "|y � p(x)|} \B(p(x), r), (6.4.8)

Ur (p(x)) = {y : (y � p(x)) · ⌫ (p(x)) < �"|y � p(x)|} \B(p(x), r). (6.4.9)

It follows from [4, (2.20)] that there exists a half-space H⇤(x) such that

x 2 H⇤(x), �H⇤(x)(x) = �D(x), Ir (p(x)) ⇢ H⇤(x) ⇢ Ur (p(x))
c . (6.4.10)

Now we are ready to prove Theorem 6.1.2.

Proof of Theorem 6.1.2. Fix " 2 (0, 1/4), the (", r)-good set from Lemma 6.4.7 and the G

constructed from G. From the definition of the trace we have

�td/↵
Z

D

rmD (t, x, x)dx = td/↵
Z

D

(pmD(t, x, x)� pm(t, x, x)) dx

= td/↵Zm

D (t)� td/↵
Z

D

pm(t, x, x)dx

= td/↵Zm

D (t)� td/↵
Z

D

�
p0(t, x, x)�

�
p0(t, x, x)� pm(t, x, x)

��
dx

= td/↵Zm

D (t)� C1|D|+ td/↵
Z

D

�
p0(t, x, x)� pm(t, x, x)

�
dx.

Hence it follows from Lemma 6.3.2 that in order to prove Theorem 6.1.2 we must show that for

given " 2 (0, 1/4) there exists a t0 > 0 such that for any 0 < t < t0,

����t
d/↵

Z

D

rmD (t, x, x)dx� C2H
d�1(@D)t1/↵

����  c(")t1/↵,

where c(") ! 0 as " ! 0. As in the proof of [4, Theorem 1.1.] we split the region of integration

into three sets

D1 = {x 2 D \ G : �D(x) < s},

D2 = {x 2 D \ G : �D(x) < s},

D3 = {x 2 D : �D(x) � s},
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where s must be smaller than the s0 given by Lemma 6.4.6. For small enough t we can take

s = t1/↵/
p
".

It is shown in [4, (3.2) and (3.4)] that

td/↵
Z

D1[D3

r0D(t, x, x)dx  c(")t1/↵ (6.4.11)

where c(") ! 0 as "! 0. Hence it follows from Lemma 6.2.1 and (6.4.11) that

td/↵
Z

D1[D3

rmD (t, x, x)dx  c(")e2mtt1/↵. (6.4.12)

Now we deal with the integral on D2. Let H⇤(x), Ir (p(x)), Ur (p(x)) be defined by (6.4.8), (6.4.9)

and (6.4.10). We have

Ir (p(x)) ⇢ H⇤(x) ⇢ Ur (p(x))
c .

Since r is less than the minimal distances between components of D, we also have

Ir (p(x)) ⇢ D ⇢ Ur (p(x))
c .

Since Ir (p(x)) ⇢ Ur (p(x))
c, By an argument similar to that used in Lemma 6.3.4 we have

���rmD (t, x, x)� rm
H⇤(x)(t, x, x)

���

 rm
Ir(p(x))(t, x, x)� rm

Ur(p(x))
c(t, x, x)

 e2mt

⇣
r0
Ir(p(x))(t, x, x)� r0

Ur(p(x))
c(t, x, x)

⌘
. (6.4.13)

Now it follows from [4, Proposition 3.1.] and (6.4.13) that

td/↵
Z

D2

���rmD (t, x, x)� rm
H⇤(x)(t, x, x)

��� dx

 ce2mt

⇣
"1�↵/2

_
p
"
⌘
H

d�1(@D)t1/↵
Z 1

0

⇣
r�d�↵+1

^ 1
⌘
dr.
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Finally we will show that the integral

td/↵
Z

D2

rm
H⇤(x)(t, x, x)dx

gives the second term C2H
d�1(@D)t1/↵ plus an error term of order c(")t1/↵. Recall that

rm
H⇤(x)(t, x, x) = fm

H⇤(t, �H⇤(x)) = fm

H (t, �D(x)).

Hence we have

td/↵
Z

D2

rm
H⇤(x)(t, x, x)dx

= td/↵
Z

D2

fm

H (t, �D(x))dx

= td/↵
Z

D

fm

H (t, �D(x))dx� td/↵
Z

D1[D3

fm

H (t, �D(x))dx.

By an argument similar to that used to get (6.4.12) we have that

td/↵
Z

D1[D3

fm

H (t, �D(x))dx  c(")t1/↵,

where c(") ! 0 as "! 0. From the (approximate) scaling property of the relativistic stable process,

we have

td/↵
Z

D

fm

H (t, �D(x))dx =

Z

D

fmt

H (1, �D(x)/t
1/↵)dx.

Now apply Lemmas 6.4.2 and 6.4.4 to the function r ! fmt

H
(1, r) and we get for small enough t

����
Z

D

fmt

H (1, �D(x)/t
1/↵)dx� C2H

d�1(@D)t1/↵
����  "t1/↵.

⇤
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