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Abstract In this paper, we study the asymptotic behavior, as the time t goes to zero, of the
trace of the semigroup of a killed relativistic α-stable process in bounded C1,1 open sets
and bounded Lipschitz open sets. More precisely, we establish the asymptotic expansion in
terms of t of the trace with an error bound of order t2/αt−d/α for C1,1 open sets and of order
t1/αt−d/α for Lipschitz open sets. Compared with the corresponding expansions for stable
processes, there are more terms between the orders t−d/α and t (2−d)/α for C1,1 open sets,
and, when α ∈ (0, 1], between the orders t−d/α and t (1−d)/α for Lipschitz open sets.

Mathematics Subject Classification (2010) 60G51 · 60J35

1 Introduction and Statement of the Main Results

For any m > 0 and α ∈ (0,2), a relativistic α-stable process Xm on R
d with mass m is a

Lévy process with characteristic function given by

E
[
exp(iξ · (Xm

t −Xm
0 ))

] = exp(−t ((|ξ |2 +m2/α)α/2 −m)), ξ ∈ R
d . (1.1)

The limiting case X0, corresponding to m = 0, is a (rotationally) symmetric α-stable
process on R

d which we will simply denote as X. The infinitesimal generator of Xm

is m − (m2/α − �)α/2. Note that when m = 1, this infinitesimal generator reduces to
1 − (1 −�)α/2. Thus the 1-resolvent kernel of the relativistic α-stable process X1 on R

d is
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just the Bessel potential kernel. When α = 1, the infinitesimal generator reduces to the so-
called free relativistic Hamiltonian m−√−�+m2. The operator m−√−�+m2 is very
important in mathematical physics due to its application to relativistic quantum mechanics.

In this paper, we will be interested in the asymptotic behavior of the trace of the semi-
group associated with killed relativistic α-stable processes in open sets of Rd . The process
Xm has a transition density pm(t, x, y) = pm(t, y − x) given by the inverse Fourier
transform

pm(t, x) = (2π)−d

∫

Rd

e−iξxe−t (|ξ |2+m2/α)α/2+mtdξ.

For any open set D in R
d , the killed relativistic α-stable process Xm,D

t is defined by

X
m,D
t =

{
Xm
t if t < τmD ,

∂ if t ≥ τmD ,

where τmD = inf{t > 0 : Xm
t /∈ D} is the first exit time of Xm from D. The process Xm,D

t is
a strong Markov process with a transition density pm

D(t, x, y) given by

pm
D(t, x, y) = pm(t, x, y)− rmD(t, x, y),

with
rmD(t, x, y) = Ex

[
t > τmD ;pm(t − τmD ,Xm

τmD
, y)

]
.

We denote by (P
m,D
t : t ≥ 0) the semigroup of Xm

t on L2(D): for any f ∈ L2(D),

P
m,D
t f (x) := Ex

[
f (X

m,D
t )

]
=

∫

D

f (y)pm
D(t, x, y)dy.

Whenever D is of finite volume, Pm,D
t is a Hilbert-Schmidt operator mapping L2(D) into

L∞(D) for every t > 0. By general operator theory, there exist an orthonormal basis
of eigenfunctions {φ(m)

n }∞
n=1 for L2(D) and corresponding eigenvalues {λ(m)

n }∞
n=1 of the

generator of the semigroup P
m,D
D satisfying

0 < λ
(m)
1 < λ

(m)
2 ≤ λ

(m)
3 ≤ · · ·

with λ
(m)
n → ∞. By definition, we have

P
m,D
t φ(m)

n (x) = e−λ
(m)
n t φ(m)

n (x), x ∈ D, t > 0.

We also have

pm
D(t, x, y) =

∞∑

n=1

e−λ
(m)
n tφ(m)

n (x)φ(m)
n (y).

λ
(0)
n will be simply denoted by λn.

In the remainder of this paper, we assume d ≥ 2. We are interested in finding the
asymptotic behavior, as t → 0, of the trace defined by

Zm
D(t) =

∫

D

pm
D(t, x, x)dx =

∞∑

n=1

e−λ
(m)
n t

∫

D

(φ(m)
n )2(x)dx =

∞∑

n=1

e−λ
(m)
n t .

It is shown in [2] that for any open set D of finite volume, it holds that

lim
t→0

td/αZ0
D = C1|D|, C1 = ωd�(d/α)

(2π)dα
, (1.2)
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where ωd = 2πd/2

�(d/2) is the surface area of the unit sphere in R
d . This is closely related to

the growth of the eigenvalues of P 0,D
t : if N0(λ) is the number of eigenvalues λj such that

λj ≤ λ, then it follows from the classical Karamata Tauberian theorem (see for example
[10]) that

N0(λ) ∼ C1|D|
�(d/α + 1)

λd/α, as λ → ∞. (1.3)

This is the analogue for killed stable processes of the celebrated Weyl’s asymptotic formula
for the eigenvalues of the Dirichlet Laplacian. We will see later in this paper that exactly the
same formula is true for relativistic stable processes. That is, the first term in the expansion
of Zm

D(t) is the same as that of Z0
D(t) and Eq. 1.3 is also true for relativistic stable processes.

Our main goal in this paper is to get the asymptotic expansion of Zm
D(t) as t → 0 under

some additional assumptions on the smoothness of the boundary of D. Our work is inspired
by the paper [7] for Brownian motion and the papers [2, 3] for stable processes. The first
theorem is an asymptotic expansion of Zm

D(t) with error bound of order t2/αt−d/α in C1,1

open sets. To state the result precisely, we need some definitions. Recall that an open set D
in R

d is said to be a (uniform) C1,1 open set if there are (localization radius) R > 0 and
�0 such that for every z ∈ ∂D, there exist a C1,1 function φ = φz : Rd−1 → R satisfying
φ(0, · · · , 0) = 0, ∇φ(0) = (0, . . . , 0), |∇φ(x)−∇φ(y)| ≤ �0|x − z| and an orthonormal
coordinate system CSz : y = (y1, · · · , yd−1, yd) := (ỹ, yd) with origin at z such that
B(z,R)∩D = {y = (ỹ, yd) ∈ B(0,R) in CSz : yd > φ(ỹ)}. For x ∈ R

d , let δD(x) denote
the Euclidean distance between x and Dc and δ∂D(x) the Euclidean distance between x and
∂D. It is well known that a C1,1 open set D satisfies both the uniform interior ball condition
and the uniform exterior ball condition: there exists r0 < R such that for every x ∈ D

with δ∂D(x) ≤ r0 and y ∈ R
d \ D̄ with δ∂D(y) ≤ r0, there are zx, zy ∈ ∂D so that

|x − zx | = δ∂D(x), |y − zy | = δ∂D(y) and that B(x0, r0) ⊂ D and B(y0, r0) ⊂ R
d \ D̄,

where x0 = zx + r0(x − zx)/|x − zx | and y0 = zy + r0(y − zy)/|y − zy |. In fact, D is a
C1,1 open set if and only if D satisfies the uniform interior ball condition and the uniform
exterior ball condition (see [1, Lemma 2.2]). In this paper we call the pair (r0,�0) the
characteristics of the C1,1 open set D. For any open set D in R

d , we use |D| to denote the
d-dimensional Lebesgue measure of D and Hd−1(∂D) to denote the (d − 1)-dimensional
Hausdorff measure of ∂D. When D is a C1,1 open set, Hd−1(∂D) is equal to the surface
measure |∂D| of ∂D. We will use H to denote the half space {x = (x1, x2, · · · , xd) : x1 >

0}.
The following is the the first main result of this paper.

Theorem 1.1 Suppose that D is a bounded C1,1 open set in R
d . Let k be the largest integer

such that k < 2
α

. Then the trace Zm
D(t) admits the following expansion

Zm
D(t) = C1|D|t− d

α − C2|∂D|t 1−d
α + ωd�(d/α)|D|

(2π)dα
t−

d
α

k∑

n=1

mn

n! t
n +O(

t2/α

td/α
),

where C1 is given in Eq. 1.2 and

C2 =
∫ ∞

0
r0
H(1, (r, 0̃), (r, 0̃))dr.

The second main result of the paper is an asymptotic expansion of Zm
D(t) with error

bound of order t1/αt−d/α in Lipschitz open sets. Before we state the second main result, we
recall the definition of Lipschitz open sets. An open set D in R

d is called a Lipschitz open
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set if there exist constants R0 (localization radius) and λ > 0 (Lipschitz constant) such that
for every z ∈ ∂D there exist a Lipschitz function F : Rd−1 → R with Lipschitz constant
λ and an orthornormal coordinate system y = (y1, · · · , yd) such that D ∩ B(z,R0) = {y :
yd > F(y1, · · · , yd−1)} ∩ B(z,R0). Here is the second main result.

Theorem 1.2 Suppose that D is a bounded Lipschitz open set in R
d . Let j be the largest

integer such that j ≤ 1
α

. Then the trace Zm
D(t) admits the following expansion

td/αZm
D(t) = C1|D| − C2Hd−1(∂D)t1/α + ωd�(d/α)|D|

(2π)dα

j∑

n=1

mn

n! t
n + o(t1/α),

where C1 and C2 are the same as in Theorem 1.

The asymptotic behaviors of the trace ZD(t) of the killed Brownian motion (i.e., killed
symmetric α-stable process with α = 2) in bounded domainsD of Rd have been extensively
studied by many authors. It is shown in [5] that, when D is a bounded C1,1 domain,

∣∣
∣∣ZD(t)− (4πt)−d/2

(
|D| −

√
πt

2
|∂D|

)∣∣
∣∣ ≤

c|D|t1−d/2

R2
, t > 0.

The following asymptotic result

ZD(t) = (4πt)−d/2
(
|D| −

√
πt

2
|∂D| + o(t1/2)

)
, t → 0, (1.4)

was proved in [6] when D is a boundedC1 domain. Equation 1.4 was subsequently extended
to Lipschitz domains in [7].

The asymptotic behaviors of the trace Z0
D(t) of killed symmetric α-stable processes,

0 < α < 2, in open sets of Rd have been studied in [2, 3]. It was shown in [2] that, for any
bounded C1,1 open set D,

∣
∣∣
∣∣
Z0
D(t)−

C1|D|
td/α

+ C2|∂D|t1/α

td/α

∣
∣∣
∣∣
≤ c|D|t2/α

r2
0 t

d/α
,

where C1 and C2 are the same as in Theorem 1 and c is a positive constant depending on d

and α only. It was shown in [3] that, when D is a bounded Lipschitz domain, Z0
D(t) satisfies

td/αZ0
D(t) = C1|D| − C2Hd−1(∂D)t1/α + o(t1/α).

Remark 1.3 Note that the first term in the expansion of Zm
D(t) is exactly the same as in

the case of Z0
D(t). However the rest of the terms are quite different. We note here that the

coefficient of the term of order t1/αt−d/α is the same in the stable process case, but in the
case of relativistic stable processes for C1,1 open sets, there are k intermediate terms of the
form tk t−d/α , where k is a positive integer less than 2/α. Since 0 < α < 2, there is at
least one more term involved in the asymptotic expansion of Zm

D(t) than that of Z0
D(t) up to

order of t2/αt−d/α . For Lipschitz open sets, when α ≤ 1 there are j intermediate terms of
the form tj t−d/α , where j is an integer that is less than or equal to 1/α.

Remark 1.4 In [4], an asymptotic expansion for the trace of relativisitic α-stable processes
in bounded C1,1 open sets was established. Compared with Theorem 1, the expansion of [4]
does not contain the intermediate terms.
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The rest of the paper is organized as follows. In Section 2, we recall some basic facts
about relativistic stable processes and present several preliminary results which will be
used in Sections 3 and 4. Theorem 1 is proved in Section 3, while Theorem 2 is proved in
Section 4.

Throughout this paper, we will use c to denote a positive constant depending (unless
otherwise explicitly stated) only on d and α but whose value may change from line to line,
even within a single line. In this paper, the big O notation f (t) = O(g(t)) always means
that there exist constants C and t0 > 0 such that f (t) ≤ Cg(t) for all 0 < t < t0.

2 Preliminaries

In this section, we recall some basic facts about relativistic α-stable processes. From Eq 1.1,
one can easily see that Xm has the following approximate scaling property:

{m−1/α(X1
mt −X1

0), t ≥ 0} has the same law as {Xm
t −Xm

0 , t ≥ 0}.
In terms of transition densities, this approximate scaling property can be written as

pm(t, x, y) = md/αp1(mt,m1/αx,m1/αy). (2.1)

It is well known that the transition density pm
D(t, x, y) of Xm,D is continuous on

(0,∞)×D×D. Since both pm(t, x, y) and pm
D(t, x, y) are continuous on (0,∞)×D×D,

rmD(t, x, y) = pm(t, x, y)−pm
D(t, x, y) is also continuous there. pm

D(t, x, y) and rmD(t, x, y)

also enjoy the following approximate scaling property:

p1
m1/αD

(t, x, y) = m−d/αpm
D(t/m, x/m1/α, y/m1/α), (2.2)

r1
m1/αD

(t, x, y) = m−d/αrmD(t/m, x/m1/α, y/m1/α). (2.3)

The Lévy measure of the relativistic α-stable process Xm has a density

Jm(x) = jm(|x|) := α

2�(1 − α/2)

∫ ∞

0
(4πu)−d/2e−|x|2/4ue−m2/αuu−(1+α/2)du,

which is continuous and radially decreasing on R
d \ {0} (see [13, Lemma 2]). Put

Jm(x, y) := jm(|x−y|). Let A(d,−α) := α2α−1π−d/2�(d+α
2 )�(1− α

2 )
−1. Using change

of variables twice, first with u = |x|2v then with v = 1/s, we get

Jm(x, y) = A(d,−α)|x − y|−d−αψ(m1/α|x − y|), (2.4)

where

ψ(r) := 2−(d+α)�

(
d + α

2

)−1 ∫ ∞

0
s(d+α)/2−1e−s/4−r2/sds, (2.5)

which satisfies ψ(0) = 1 and

c−1
1 e−r r(d+α−1)/2 ≤ ψ(r) ≤ c1e

−r r(d+α−1)/2 on [1,∞)

for some c1 > 1 (see [9, pp. 276-277] for details). We denote the Lévy density of X by

J (x, y) := J 0(x, y) = A(d,−α)|x − y|−d−α.

Note that from Eqs. 2.4 and 2.5 we see that for any x ∈ R
d \ {0}

jm(|x|) ≤ j0(|x|).
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It follows from [8, Theorem 4.1.] that, for any positive constants M and T there exists a
constant c > 1 such that for all m ∈ (0,M], t ∈ (0, T ], and x, y ∈ R

d we have

c−1
(
t−d/α ∧ tJm(x, y)

)
≤ pm(t, x, y) ≤ c

(
t−d/α ∧ tJm(x, y)

)
. (2.6)

We will need a simple lemma from [11] about the relationship between rmD(t, x, y) and
r0
D(t, x, y). The lemma is true in much more general situations but we just need it when

one of the processes is a symmetric α-stable process and the other is a relativistic α-stable
process.

Lemma 2.1 Suppose that X and Y are two Lévy processes with Lévy densities JX and JY ,
respectively. Suppose that σ = JX − JY is nonnegative on R

d with
∫
Rd σ (x)dx = � < ∞

and D is an open set. Then for any x ∈ D and t > 0,

pY
D(t, x, ·) ≤ e�tpX

D(t, x, ·) a.s.

If, in addition, pX(t, ·) and pY (t, ·) are continuous, then we have for x, y ∈ D,

rYD(t, x, y) ≤ e2�t rXD(t, x, y).

The next proposition is the (generalized) Ikeda-Watanabe formula for the relativistic
stable process, which describes the joint distribution of τmD and Xm

τmD
.

Proposition 2.2 (Proposition 2.7 [12]) Assume that D is an open subset of Rd and A is a
Borel set such that A ⊂ Dc \ ∂D. If 0 ≤ t1 < t2 < ∞, then

Px

(
Xm
τmD

∈ A, t1 < τmD < t2

)
=

∫

D

∫ t2

t1

pm
D(s, x, y)ds

∫

A

Jm(y, z)dzdy, x ∈ D.

Now we state a simple lemma about the upper bound of rmD(t, x, y), which is an analogue
of [2, Lemma 2.1] for stable processes.

Lemma 2.3 Let M,T be positive constants. Then there exists a constant c = c(d, α,M, T )

such that for all m ∈ (0,M] and t ∈ (0, T ] we have

rmD(t, x, y) ≤ c

(

t−d/α ∧ tψ(m1/αδD(x))

δD(x)d+α

)

.

Proof Since ψ is eventually decreasing and ψ(0) = 1 > 0, there exists a constant c1 > 0
such that ψ(x) ≤ c1ψ(y) for all 0 ≤ y ≤ x. Now from the definition of rmD(t, x, y) and
Eq. 2.6 we have

rmD(t, x, y) = rmD(t, y, x)

≤ Ey

[
t > τmD ;pm(t − τmD ,Xm

τmD
, x)

]

≤ Ey

⎡

⎣c

⎛

⎝t−d/α ∧
tψ(m1/α|x − Xm

τmD
|)

|x − Xm
τmD
|d+α

⎞

⎠

⎤

⎦

≤ cc1

(

t−d/α ∧ tψ(m1/αδD(x))

δD(x)d+α

)

.

�
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We will need two results from [2]. The first result is about the difference pm
F (t, x, y)−

pm
D(t, x, y) when D ⊂ F . The proof in [2], given for stable processes, mainly uses

the strong Markov property and it works for all strong Markov processes with transition
densities.

Proposition 2.4 (Proposition 2.3 [2]) Let D and F be open sets in R
d such that D ⊂ F .

Then for any x, y ∈ R
d we have

pm
F (t, x, y)− pm

D(t, x, y) = Ex

[
τmD < t,Xm

τmD
∈ F \D : pm

F (t − τmD ,Xm
τmD
, y)

]
.

Now we introduce some notation. Recall that if D is a C1,1 open set with characteristics
(r0, �0), then for any point y ∈ ∂D there are two open balls B1 and B2 with radii r0 such
that B1 ⊂ D, B2 ⊂ R

d \ (D ∪ ∂D), ∂B1 ∩ ∂B2 = {y}. For any x ∈ D with δD(x) < r0/2
there exists a unique point zx ∈ ∂D such that δD(x) = |x − zx |. Let B1 = B(z1, r0),
B2 = B(z2, r0) be the balls for the point zx . Let H(x) be the half-space containing B1 such
that ∂H(x) contains zx and is perpendicular to the segment z1z2. The next proposition says
that, in case of the symmetric α-stable process, for small t , the quantity r0

D(t, x, x) can be
replaced by r0

H(x)
(t, x, x), which was a very crucial step in proving the main result in [2].

Proposition 2.5 (Proposition 3.1 of [2]) Let D ⊂ R
d be a C1,1 open set with characteristics

(r0, �0). Then, for any x with δ∂D(x) < r0/2 and t > 0 with t1/α ≤ r0/2, we have

∣∣
∣r0
D(t, x, x)− r0

H(x)(t, x, x)

∣∣
∣ ≤ ct1/α

r0td/α

⎛

⎝
(

t1/α

δ∂D(x)

)d+ α
2 −1

∧ 1

⎞

⎠ .

We will need some facts about the “stability” of the surface area of the boundary of C1,1

open sets. The following lemma is [5, Lemma 5].

Lemma 2.6 Let D be a boundedC1,1 open set in R
d with characteristic (r0, �0) and define

for 0 ≤ q < r0,
Dq = {x ∈ D : δD(x) > q}.

Then (
r0 − q

r0

)d−1

|∂D| ≤ |∂Dq | ≤
(

r0

r0 − q

)d−1

|∂D|, 0 ≤ q < r0.

The following result is [2, Corollary 2.14].

Lemma 2.7 Let D be a bounded C1,1 open set in R
d with characteristic (r0,�0). For any

0 < q ≤ r0/2, we have

1. 2−d+1|∂D| ≤ |∂Dq | ≤ 2d−1|∂D|,
2. |∂D| ≤ 2d |D|

r0
,

3.
∣
∣|∂Dq | − |∂D|∣∣ ≤ 2d dq|∂D|

r0
≤ 22ddq|D|

r2
0

.

3 Proof of Theorem 1.1

We first prove that limt→0 t
d
α Zm

D(t) exists and identify the limit.
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Lemma 3.1 The limit limt→0 t
d
α Zm

D(t) exists and is equal to C1|D|, where C1 is the
constant in Theorem 1.1.

Proof By definition,

td/αZm
D(t) = td/α

∫

D

pm
D(t, x, x)dx

= td/α
(∫

D

pm(t, x, x)dx −
∫

D

rmD(t, x, x)dx

)
. (3.1)

For the first integral on the right hand side of Eq. 3.1, note that, by the approximate scaling
property (2.1) and the dominated convergence theorem, we have, as t → 0,

td/α
(∫

D

pm(t, x, x)dx

)
=

∫

D

ptm(1, x/t1/α, x/t1/α)dx = |D|ptm(1, 0)

→ |D| · p0(1, 0) = |D| · �(d/α)ωd

(2π)dα
.

It remains to show that limt→0 t
d/α

∫
D
rmD(t, x, x)dx = 0. By Lemma 2.3 we have that

td/αrmD(t, x, y) ≤ c, (t, x, y) ∈ (0,1] ×D ×D,

for some c > 0. Hence we have by the dominated convergence theorem,

td/α
∫

D\D
t1/2α

rmD(t, x, x) → 0 as t → 0.

For x ∈ Dt1/2α we have by Lemma 2.3 again for t ∈ (0,1],
rmD(t, x, x) ≤ c t

1
2− d

2α , x ∈ Dt1/2α .

Hence limt→0 t
d/α

∫
D

t1/2α
rmD(t, x, x)dx = 0. �

It follows from Lemma 3.1 that if Nm(λ) denotes the number of eigenvalues λ(m)
j such

that λ(m)
j ≤ λ, then it follows from the classical Karamata Tauberian theorem (see for

example [10]) that

Nm(λ) ∼ C1|D|
�(d/α + 1)

λd/α, as λ → ∞.

This is the analogue for killed relativistic stable processes of the celebrated Weyl’s
asymptotic formula for the eigenvalues of the Dirichlet Laplacian and it is already proved
in [4] (see [4, (1.10)]). This result has been known at least since 2009, see [4, Remark 1.2].

Now we focus on identifying the next terms in Zm
D(t). For this, we need to find the order

of t in Zm
D(t)− C1t

− d
α . Note that by Lemma 3.1,

Zm
D(t)− C1t

−d/α =
∫

D

pm
D(t, x, x)− p0(t, x, x)dx

=
∫

D

(
pm(t, x, x)− p0(t, x, x)

)
dx −

∫

D

rmD(t, x, x)dx.

The next lemma gives the orders of t in pm(t, x, x)− p0(t, x, x) up to t
2
α t− d

α .
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Lemma 3.2 Let k be the largest integer such that k < 2
α

. Then we have

pm(t, x, x)− p0(t, x, x) = t−d/α ωd�(d/α)

(2π)dα

k∑

n=1

mn

n! t
n +O(t2/αt−d/α).

Proof By the scaling property (2.1) we have

pm(t, x, x)− p0(t, x, x) = pm(t, 0)− p0(t, 0)

= t−d/α
(
ptm(1, 0)− p0(1, 0)

)

= t−d/α(2π)−d

∫

Rd

(
e−(|ξ |2+(mt)2/α )α/2+mt − e−|ξ |α) dξ.

Note that for any x ≥ 0 we have (1 + x)α/2 ≤ 1 + α
2 x. Thus

(
|ξ |2 + (mt)2/α

)α/2 = |ξ |α
(

1 + (mt)2/α

|ξ |2
)α/2

≤ |ξ |α
(

1 + α

2

(mt)2/α

|ξ |2
)

.

Consequently

0 ≤ e−|ξ |α − e−
(|ξ |2+(mt)2/α

)α/2

≤ e−|ξ |α − e
−|ξ |α

(
1+ α

2
(mt)2/α

|ξ |2
)

= e−|ξ |α
(

1 − e
− α

2
(mt)2/α

|ξ |2−α

)

≤ e−|ξ |α
(
α

2

(mt)2/α

|ξ |2−α

)

,

where we used 1 − e−x ≤ x for all x ≥ 0 in the last inequality above. Therefore

0 ≤
∫

Rd

e−
(|ξ |2+(mt)2/α

)α/2+mt − e−|ξ |αdξ

≤
∫

Rd

∣
∣∣
∣e

−(|ξ |2+(mt)2/α
)α/2+mt − e−|ξ |αemt + e−|ξ |α emt − e−|ξ |α

∣
∣∣
∣ dξ

≤
∫

Rd

∣
∣∣
∣e

−(|ξ |2+(mt)2/α
)α/2+mt − e−|ξ |αemt

∣
∣∣
∣ dξ +

∫

Rd

∣
∣∣e−|ξ |α emt − e−|ξ |α

∣
∣∣ dξ

≤
∫

Rd

emte−|ξ |α
(
α

2

(mt)2/α

|ξ |2−α

)

dξ +
∫

Rd

e−|ξ |α (
emt − 1

)
dξ

= emt α

2
(mt)2/α

∫

Rd

e−|ξ |α

|ξ |2−α
dξ +

∞∑

n=1

(mt)n

n!
∫

Rd

e−|ξ |αdξ.

Since k + j ≥ 2/α for any j ≥ 1, we have
∞∑

n=k+1

(mt)n

n! = O(t2/α). Therefore

∫

Rd

(
e−

(|ξ |2+(mt)2/α
)α/2+mt − e−|ξ |α

)
dξ = O(t2/α)+ ωd�(d/α)

α

k∑

n=1

(mt)n

n! (3.2)
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and

pm(t, x, x)− p0(t, x, x) = t−d/α ωd�(d/α)

(2π)dα

k∑

n=1

mn

n! t
n +O(t2/αt−d/α). (3.3)

�

Now we try to find the orders of t in the expansion of
∫
D
rmD(t, x, x)dx up to the order

of t
2
α t− d

α . For this, we need to assume some regularity condition on the boundary of D.
Hence in the remainder of this section we assume that D is a bounded C1,1 open set with
characteristic (r0,�0). We also assume that t1/α ≤ r0

2 .
We first deal with the contribution in Dr0/2.

Lemma 3.3 There exists c = c(d, α) > 0 such that

∫

Dr0/2

rmD(t, x, x)dx ≤ ce2mt |D|t2/α

r2
0 t

d/α
.

Proof It follows from [13, Lemma 2] and Lemma 2.1 that rmD(t, x, y) ≤ e2mtr0
D(t, x, y).

By [2, (3.2)] we know that
∫

Dr0/2

r0
D(t, x, y)dx ≤ c|D|t2/α

r2
0 t

d/α
. (3.4)

The desired assertion follows immediately. �

Lemma 3.4 There exists c = c(d, α) > 0 such that

rmD(t, x, x)− rmH(x)(t, x, x) ≤ ce2mt t
1/α

td/α

⎛

⎝

(
t1/α

δD(x)

)d+ α
2 −1

∧ 1

⎞

⎠

and

∫

D\Dr0/2

(
rmD(t, x, x)− rmH(x)(t, x, x)

)
dx ≤ ce2mt t

2/α

td/α
.

Proof If the first assertion of the lemma is right, then it is easy to see that

∫

D\Dr0/2

⎛

⎝

(
t1/α

δD(x)

)d+ α
2 −1

∧ 1

⎞

⎠ dx ≤ ct1/α.

Hence we focus on proving the first assertion. By [2, (3.4)], we know that

r0
D(t, x, x)− r0

H(x)(t, x, x) ≤ c
t1/α

td/α

⎛

⎝

(
t1/α

δD(x)

)d+ α
2 −1

∧ 1

⎞

⎠ .
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Recall that Jm(x) ≤ J 0(x) for any x ∈ R
d \ {0}. Now it follows from the generalized

Ikeda-Watanabe formula (Proposition 2.2), Proposition 2.4, and Lemma 2.1 that

rmD(t, x, x)− rmH(x)(t, x, x)

= Ex

[
t > τmD ,Xm

τmD
∈ H(x) \D;pm

H(x)(t − τmD ,Xm
τmD
, x)

]

=
∫

D

∫ t

0
pm
D(s, x, y)ds

∫

H(x)\D
Jm(y, z)pm

H(x)(t − s, z, x)dzdy

≤ e2mt

∫

D

∫ t

0
p0
D(s, x, y)ds

∫

H(x)\D
J 0(y, z)p0

H(x)(t − s, z, x)dzdy

= e2mt
Ex

[
t > τ0

D,Xτ0
D
∈ H(x) \D;p0

H(x)(t − τ0
D,Xτ0

D
, x)

]

= e2mt
(
r0
D(t, x, x)− r0

H(x)(t, x, x)
)

≤ ce2mt t
1/α

td/α

(

(
t1/α

δD(x)
)d+

α
2 −1 ∧ 1

)

.

For convenience, we define the following notation.

f m
H (t, r) := rmH (t, (r, 0̃), (r, 0̃)), r > 0.

Lemma 3.5 There exists c = c(d, α) > 0 such that
∫

D\Dr0/2

rmH(x)(t, x, x)dx − t1/αt−d/α

∫ r0
2t1/α

0
|∂D|f tm

H (1, u)du ≤ ct2/αt−d/α.

�

Proof Using the scaling relation (2.3) we get
∫

D\Dr0/2

rmH(x)(t, x, x)dx

=
∫ r0/2

0
|∂Du|fm

H (t, u)du

=
∫ r0/2

0
|∂Du|t−d/αf tm

H (1, u/t1/α)du

= t1/αt−d/α

∫ r0/2t1/α

0
|∂Dut1/α |f tm

H (1, u)du.

It follows from Lemma 2.7 that
∣
∣|∂Dq | − |∂D|∣∣ ≤ 2ddq|∂D|

r0
≤ 22ddq|D|

r2
0

for any q ≤ r0/2.

Hence ∣
∣∣
∣∣

∫

D\Dr0/2

rmH(x)(t, x, x)− t1/αt−d/α

∫ r0
2t1/α

0
|∂D|f tm

H (1, u)du

∣
∣∣
∣∣

≤ t1/αt−d/α

∫ r0
2t1/α

0

∣∣|∂Dut1/α | − |∂D|∣∣ f tm
H (1, u)du

≤ c1t
2/αt−d/α

∫ ∞

0
uf tm

H (1, u)du

≤ c2t
2/αt−d/α.
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�Lemma 3.6 There exists c = c(d, α) > 0 such that

t1/αt−d/α

∫ ∞

0
|∂D|f tm

H (1, u)du− t1/αt−d/α

∫ r0
2t1/α

0
|∂D|f tm

H (1, u)du ≤ ct2/αt−d/α.

Proof It follows from Lemma 2.1 that

t1/αt−d/α

∫ ∞

0
|∂D|f tm

H (1, u)du− t1/αt−d/α

∫ r0
2t1/α

0
|∂D|f tm

H (1, u)du

= t1/αt−d/α

∫ ∞
r0

2t1/α

|∂D|f tm
H (1, u)du

= t1/αt−d/α|∂D|
∫ ∞

r0
2t1/α

f tm
H (1, u)du

≤ e2mt t1/αt−d/α|∂D|
∫ ∞

r0
2t1/α

f 0
H (1, u)du.

For q ≥ r0/(2t1/α) we have f 0
H (1, q) ≤ cq−d−α ≤ cq−2. Hence

∫ ∞
r0

2t1/α

f 0
H (1, u)du ≤ c

∫ ∞
r0

2t1/α

dq

q2
≤ c

t1/α

r0

and the result now follows. �

Lemma 3.7 lim
t↓0

∫ ∞

0
f tm
H (1, u)du =

∫ ∞

0
f 0
H (1, u)du.

Proof This follows immediately from the continuity of m �→ rmD(t, x, y) and the dominated
convergence theorem. �

Proof of Theorem 1.1 Combining Lemmas 3.1-3.7, we immediately arrive at Theorem
1.1.

4 Proof of Theorem 1.2

In this section we always assume that D is a bounded Lipschitz open set in R
d . The argu-

ment of this section is similar to previous section and [3]. We will follow the argument
in [3] closely, making necessary modifications for relativistic stable processes. Note that
even though the main theorem in [3] is stated for a Lipschitz domain, it remains true for a
bounded Lipschitz open set.

First we need two technical facts which play crucial roles later. The first proposition is
[3, Proposition 2.9] and we will state it here for reader’s convenience.

Proposition 4.1 (Proposition 2.9. [3]) Suppose that f : (0,∞) → [0,∞) is continuous
and satisfies f (r) ≤ c(1 ∧ r−β) for some β > 1. Furthermore, suppose that for any
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0 < R1 < R2 < ∞, f is Lipschitz on [R1, R2]. Then we have

lim
η→0+

1

η

∫

D

f

(
δD(x)

η

)
dx = Hd−1(∂D)

∫ ∞

0
f (r)dr.

Lemma 4.2 Suppose that f : (0,∞) → [0,∞) is continuous and satisfies f (r) ≤ c1(1 ∧
r−β) for some β > 1. Furthermore, suppose that for any 0 < R1 < R2 < ∞, f is Lipschitz
on [R1, R2]. Let {f η : η > 0} be continuous functions from (0,∞) to [0,∞) such that, for
any 0 < L < M < ∞, lim

η→0
f η(r) = f (r) uniformly for r ∈ [L,M]. Suppose that there

exists c2 > 0 such that f η(r) ≤ c2f (r) for all η ≤ 1. Then we have

lim
η→0+

1

η

∫

D

f η

(
δD(x)

η

)
dx = Hd−1(∂D)

∫ ∞

0
f (r)dr.

Proof Let ψη(r) = η−1 |{x ∈ D : δD(x) < ηr}|. Note (cf. proof of [7, Proposition 1.1])
that ψη(r) ≤ c for all η, r > 0 and that

η−1
∫

D

f

(
δD(x)

η

)
dx =

∫ ∞

0
f (r)dψη(r),

and

η−1
∫

D

f η

(
δD(x)

η

)
dx =

∫ ∞

0
f η(r)dψη(r).

It was shown in [3, Proposition 2.9.] that, for any 0 < R1 < R2 < ∞ and η > 0, f satisfies
∫ R1

0
f (r)dψη(r) ≤ cR1, (4.1)

∫ ∞

R2

f (r)dψη(r) ≤ cηβ−1 + cR
1−β

2 , (4.2)

lim
η→0+

∫ R2

R1

f (r)dψη(r) = Hd−1(∂D)

∫ R2

R1

f (r)dr.

Since f η ≤ c2f for η ≤ 1 we have the same inequalities as Eqs. 4.1 and 4.2 for f η, η ≤ 1.
Hence it is enough to show that

lim
η→0+

∫ R2

R1

f η(r)dψη(r) = Hd−1(∂D)

∫ R2

R1

f (r)dr.

For any partition R1 = x0 < x1 < · · · < xn = R2 of [R1, R2], we have
∣∣
∣∣
∣

n∑

i=1

f η(xi) (ψn(xi)− ψn(xi−1))−
n∑

i=1

f (xi) (ψn(xi)− ψn(xi−1))

∣∣
∣∣
∣

=
n∑

i=1

|f η(xi)− f (xi)| (ψn(xi)− ψn(xi−1))

≤ ‖ f η − f ‖L∞[R1,R2] ψη(R2).

Note that for any η > 0 the function r → ψη(r) is nondecreasing and for any η > 0, r > 0
we have ψη(r) ≤ cr for some constant c. Since f η → f uniformly on r ∈ [R1, R2], taking
supremum for all possible partitions gives

lim
η→0+

∫ R2

R1

f η(r)dψη(r) = lim
η→0+

∫ R2

R1

f (r)dψη(r) = Hd−1(∂D)

∫ R2

R1

f (r)dr.
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�Lemma 4.3 For any 0 < L < M < ∞, pm(t, x, y) converges uniformly to p0(t, x, y) as
m → 0 for (t, x, y) ∈ [L,M] × R

d × R
d .

Proof Note that
∣
∣∣pm(t, x, y)−p0(t, x, y)

∣
∣∣ =

∣∣
∣∣(2π)

−d

∫

Rd

e−iξ(y−x)
(
e−t ((|ξ |2+m2/α)α/2−m) − e−t |ξ |α) dξ

∣∣
∣∣

≤ (2π)−d

∫

Rd

∣∣
∣e−iξ(y−x)

(
e−t ((|ξ |2+m2/α)α/2−m) − e−t |ξ |α)

∣∣
∣ dξ

≤ (2π)−d

∫

Rd
e−t ((|ξ |2+m2/α)α/2−m) − e−t |ξ |αdξ

= (2π)−d(pm(t, 0)− p0(t, 0)).

Now it follows from the proof of Lemma 3.2 that for t ∈ [L,M] and x, y ∈ R
d ,

∣∣
∣p0(t, x, y)− pm(t, x, y)

∣∣
∣

≤ t−d/α(2π)−d

(

emt α

2
(mt)2/α

∫

Rd

e−|ξ |α

|ξ |2−α
dξ +

∞∑

n=1

(mt)n

n!
∫

Rd

e−|ξ |αdξ
)

≤ L−d/α(2π)−d

(

emM α

2
(mM)2/α

∫

Rd

e−|ξ |α

|ξ |2−α
dξ +

∞∑

n=1

(mM)n

n!
∫

Rd

e−|ξ |αdξ
)

.

The last quantity above converges to 0 as m → 0. �

Lemma 4.4 For any 0 < L < M < ∞ and m > 0,

lim
t→0

f tm
H (1, r) = f 0

H (1, r), uniformly in r ∈ [L,M],
that is, given ε > 0 there exists t0 > 0 such that for 0 ≤ t ≤ t0 we have

sup
r∈[L,M]

∣∣
∣rtmH (1, (r, 0̃), (r, 0̃))− r0

H(1, (r, 0̃), (r, 0̃))
∣∣
∣ < ε.

Proof Recall that r0
H (t, x, y) = Ex[τ0

H < t, p0(t − τ0
H ,Xτ0

H
, y)] and rmH (t, x, y) =

Ex[τmH < t, pm(t − τmH ,Xm
τmH
, y)]. It is well known that

p0(t, x, y) � t−d/α ∧ t

|x − y|d+α
.

Since |X0
τ0
H

− (r, 0̃)| > L, we have, together with Lemma 2.1,

p0(1 − τ0
H ,X0

τ0
H

, (r, 0̃)) ≤ c
1 − τ0

H

Ld+α
,

ptm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃)) ≤ cetm
1 − τ tmH

Ld+α
.

Now take δ1 small so that

E
(r,0̃)

[
1 − δ1 ≤ τ0

H < 1, p0(1 − τ0
H ,X0

τ0
H

, (r, 0̃))
]
< ε, (4.3)

E
(r,0̃)

[
1 − δ1 ≤ τ tmH < 1, ptm(1 − τ tmH ,Xtm

τ tmH
, (r, 0̃))

]
< ε. (4.4)
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Now let V m be a Lévy process with Lévy density σ = J −Jm and define T m := inf{t >
0 : V m

t �= 0}. Then V m is a compound Poisson process and T m is an exponential random
variable with parameter m and independent of X (See [13]). Then we have

E
(r,0̃)

[
τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]

= E
(r,0̃)

[
T tm > 1, τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]

+ E
(r,0̃)

[
T tm ≤ 1, τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]
.

Since ptm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃)) ≤ c emt

Ld+α , we have

E
(r,0̃)

[
T tm ≤ 1, τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]
≤ c

emt

Ld+α
(1 − e−mt ). (4.5)

Similarly we also have

E
(r,0̃)

[
T tm ≤ 1, τ0

H < 1 − δ1, p
0(1 − τ0

H ,X0
τH
, (r, 0̃))

]
≤ c

1

Ld+α
(1 − e−mt ). (4.6)

Take t1 > 0 such that Eqs. 4.5 and 4.6 are less than ε for all t ≤ t1. Next note that for
T tm > 1 and τ tmH < 1, we have τ tmH = τ0

H and Xtm
τtmH

= X0
τ0
H

. Hence it follows that

|E
(r,0̃)

[
T tm > 1, τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]

−E
(r,0̃)

[
T tm > 1, τ0

H < 1 − δ1, p
0(1 − τ0

H ,X0
τ0
H

, (r, 0̃))
]
|

≤ E
(r,0̃)

[
T tm > 1, τ0

H < 1 − δ1, |ptm(1 − τ0
H ,X0

τ0
H

, (r, 0̃))− p0(1 − τ0
H ,X0

τ0
H

, (r, 0̃))|
]

≤ sup
s∈[δ1,1],x,y∈Rd

|ptm(s, x, y)− p0(s, x, y)|. (4.7)

It follows from Lemma 4.3 that there exists t2 > 0 such that
sups∈[δ1,1],x,y∈Rd |ptm(s, x, y) − p0(s, x, y)| < ε for 0 ≤ t ≤ t2. Now let t0 = t1 ∧ t2.
Then for any 0 ≤ t ≤ t0 we have from Eqs. 4.3-4.7

|rtmH (1, (r, 0̃), (r, 0̃))− r0
H (1, (r, 0̃), (r, 0̃))|

= |E
(r,0̃)[τ tmH < 1, ptm(1 − τ tmH ,Xtm

τ tmH
, (r, 0̃))] − E

(r,0̃)[τ0
H < 1, p0(1 − τ0

H ,X0
τ0
H

, (r, 0̃))]|
≤ |E

(r,0̃)[1 > τtmH > 1 − δ1, τ
tm
H < 1, ptm(1 − τ tmH ,Xtm

τ tmH
, (r, 0̃))]| +

|E
(r,0̃)[1 > τ0

H > 1 − δ1, τ
0
H < 1, p0(1 − τ0

H ,X0
τ0
H

, (r, 0̃))]| +
|E

(r,0̃)

[
T tm ≤ 1, τ tmH < 1 − δ1, p

tm(1 − τ tmH ,Xtm
τ tmH

, (r, 0̃))
]
| +

|E
(r,0̃)

[
T tm ≤ 1, τ0

H < 1 − δ1, p
0(1 − τ0

H ,X0
τ0
H

, (r, 0̃))
]
|

+|E
(r,0̃)

[
T tm > 1, τ0

H < 1 − δ1, p
tm(1 − τ0

H ,X0
τ0
H

, (r, 0̃))
]

−E
(r,0̃)

[
T tm > 1, τ0

H < 1 − δ1, p
0(1 − τ0

H ,X0
τ0
H

, (r, 0̃))
]
|

< 5ε.

�
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As in [3], we need to divide the Lipschitz open set D into a good set and a bad set. We
recall several geometric facts about the Lipschitz open set.

Definition 4.5 Let ε, r > 0. We say that G ⊂ ∂D is (ε, r)-good if for each point p ∈ G,
the unit inner normal ν(p) exists and

B(p, r) ∩ ∂D ⊂ {x : |(x − p) · ν(p)| < ε|x − p|}.

If G is an (ε, r)-good subset of ∂D, then using this definition we can construct a good
subset G of the points near the boundary:

G =
⋃

p∈G
�r(p, ε),

where �r(p, ε) = {x : (x − p) · ν(p) > √
1 − ε2|x − p|} ∩ B(p, r).

The next lemma is [3, Lemma 2.7] and it says the measure of the set of the bad points
near the boundary is small. Note that even though [3, Lemma 2.7] is stated for a bounded
Lipschitz domain, the proof remains true for a bounded Lipschitz open set.

Lemma 4.6 (Lemma 2.7 in [3]) Suppose ε ∈ (0, 1/2), r > 0 and that G is a measurable
(ε, r)-good subset of ∂D. There exists s0(∂D,G) > 0 such that for all s < s0

|{x ∈ D : δD(x) < s} \ G| ≤ s
[
Hd−1(∂D \G)+ ε

(
3 +Hd−1(∂D)

)]
.

The next lemma is about the existence of a good subset G ⊂ ∂D. Again the lemma
remains true for a bounded Lipschitz open set D.

Lemma 4.7 (Lemma 2.8 in [3]) For any ε > 0 there exists r > 0 such that an (ε, r)-good
set G ⊂ ∂D exists and

Hd−1(∂D \G) < ε.

The two lemmas above imply that

|{x ∈ D : δD(x) < s} \ G| ≤ sε
(

4 +Hd−1(∂D)
)
.

For any ε ∈ (0,1/4), we fix the (ε, r)-good set from Lemma 4.7 and construct G from G.
We choose r to be smaller than the minimal distances between (finitely many) components
of D. For any x ∈ G, there exists p(x) ∈ ∂D such that x ∈ �r(p(x), ε). Next we define
inner and outer cones as follows

Ir (p(x)) = {y : (y − p(x)) · ν (p(x)) > ε|y − p(x)|} ∩ B(p(x), r), (4.8)

Ur (p(x)) = {y : (y − p(x)) · ν (p(x)) < −ε|y − p(x)|} ∩ B(p(x), r). (4.9)

It follows from [3, (2.20)] that there exists a half-space H ∗(x) such that

x ∈ H ∗(x), δH ∗(x)(x) = δD(x), Ir (p(x)) ⊂ H ∗(x) ⊂ Ur (p(x))
c . (4.10)

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Fix ε ∈ (0,1/4), the (ε, r)-good set from Lemma 4.7 and the G
constructed from G. From the definition of the trace we have

−td/α
∫

D

rmD(t, x, x)dx = td/α
∫

D

(
pm
D(t, x, x)− pm(t, x, x)

)
dx

= td/αZm
D(t)− td/α

∫

D

pm(t, x, x)dx

= td/αZm
D(t)− td/α

∫

D

(
p0(t, x, x)−

(
p0(t, x, x)− pm(t, x, x)

))
dx

= td/αZm
D(t)− C1|D| + td/α

∫

D

(
p0(t, x, x)− pm(t, x, x)

)
dx.

Hence it follows from Lemma 3.2 that in order to prove Theorem 1.2 we must show that for
given ε ∈ (0, 1/4) there exists a t0 > 0 such that for any 0 < t < t0,

∣
∣∣
∣t
d/α

∫

D

rmD(t, x, x)dx − C2Hd−1(∂D)t1/α
∣
∣∣
∣ ≤ c(ε)t1/α,

where c(ε) → 0 as ε → 0. As in the proof of [3, Theorem 1.1.] we split the region of
integration into three sets

D1 = {x ∈ D \ G : δD(x) < s},
D2 = {x ∈ D ∩ G : δD(x) < s},
D3 = {x ∈ D : δD(x) ≥ s},

where s must be smaller than the s0 given by Lemma 4.6. For small enough t we can take

s = t1/α/
√
ε.

It is shown in [3, (3.2) and (3.4)] that

td/α
∫

D1∪D3

r0
D(t, x, x)dx ≤ c(ε)t1/α (4.11)

where c(ε) → 0 as ε → 0. Hence it follows from Lemma 2.1 and Eq. 4.11 that

td/α
∫

D1∪D3

rmD(t, x, x)dx ≤ c(ε)e2mt t1/α. (4.12)

Now we deal with the integral on D2. Let H ∗(x), Ir (p(x)), Ur (p(x)) be defined by
Eqs. 4.8, 4.9 and 4.10. We have

Ir (p(x)) ⊂ H ∗(x) ⊂ Ur (p(x))
c .

Since r is less than the minimal distances between components of D, we also have

Ir (p(x)) ⊂ D ⊂ Ur (p(x))
c .

Since Ir (p(x)) ⊂ Ur (p(x))
c, by an argument similar to that used in Lemma 3.4 we have

∣∣
∣rmD(t, x, x)− rmH ∗(x)(t, x, x)

∣∣
∣

≤ rmIr (p(x))(t, x, x)− rm
Ur(p(x))

c (t, x, x)

≤ e2mt
(
r0
Ir (p(x))

(t, x, x)− r0
Ur(p(x))

c (t, x, x)
)
. (4.13)
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Now it follows from the argument after the statement of [3, Proposition 3.1.] and Eq. 4.13
that

td/α
∫

D2

∣
∣∣rmD(t, x, x)− rmH ∗(x)(t, x, x)

∣
∣∣ dx

≤ ce2mt
(
ε1−α/2 ∨√

ε
)
Hd−1(∂D)t1/α

∫ ∞

0

(
r−d−α+1 ∧ 1

)
dr.

Finally we will show that the integral

td/α
∫

D2

rmH ∗(x)(t, x, x)dx

gives the second term C2Hd−1(∂D)t1/α plus an error term of order c(ε)t1/α. Recall that

rmH ∗(x)(t, x, x) = f m
H ∗(t, δH ∗(x)) = f m

H (t, δD(x)).

Hence we have

td/α
∫

D2

rmH ∗(x)(t, x, x)dx

= td/α
∫

D2

f m
H (t, δD(x))dx

= td/α
∫

D

fm
H (t, δD(x))dx − td/α

∫

D1∪D3

fm
H (t, δD(x))dx.

By an argument similar to that used to get (4.12) we have that

td/α
∫

D1∪D3

f m
H (t, δD(x))dx ≤ c(ε)t1/α,

where c(ε) → 0 as ε → 0. From the (approximate) scaling property of the relativistic stable
process, we have

td/α
∫

D

fm
H (t, δD(x))dx =

∫

D

fmt
H (1, δD(x)/t1/α)dx.

Now apply Lemmas 4.2 and 4.4 to the function r → f mt
H (1, r) and we get for small enough

t ∣∣
∣∣

∫

D

fmt
H (1, δD(x)/t

1/α)dx − C2Hd−1(∂D)t1/α
∣∣
∣∣ ≤ εt1/α.

�
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