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Abstract
We prove uniformHausdorff and packing dimension results for the inverse images of a
large class of real-valued symmetric Lévy processes. Ourmain result for the Hausdorff
dimension extends that of Kaufman (C R Acad Sci Paris Sér I Math 300:281–282,
1985) for Brownian motion and that of Song et al. (Electron Commun Probab 23:10,
2018) for α-stable Lévy processes with 1 < α < 2. Along the way, we also prove
an upper bound for the uniform modulus of continuity of the local times of these
processes.

Mathematics Subject Classification (2010) Primary 60J75 · 60G52 · 60G17 · 28A80

1 Introduction

The inverse images of Lévy processes have been studied intensively. When F = {y}
is a single set, the question whether P(X−1(F) �= ∅) = 0 boils down to whether
y is polar for X , which is an important question in potential theory. As the sample
paths of X are typically irregular, so the inverse images, in particular the level sets, are
of a fractal nature. It is thus of interest to determine the fractal dimension of the set

B Xiaochuan Yang
xiaochuan.j.yang@gmail.com; xiaochuan.yang@uni.lu

Hyunchul Park
parkh@newpaltz.edu

Yimin Xiao
xiaoyimi@stt.msu.edu

1 Department of Mathematics, State University of New York at New Paltz, New Paltz, NY 12561,
USA

2 Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824,
USA

3 Mathematics Research Unit, University of Luxembourg, Esch-sur-Alzette, Grand Duchy of
Luxembourg

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-019-00956-3&domain=pdf
http://orcid.org/0000-0003-2435-4615


2214 Journal of Theoretical Probability (2020) 33:2213–2232

X−1(F), where F is a Borel subset ofR. The problems for determining the Hausdorff
dimension and capacity of X−1(F) (when F ⊂ R is fixed) were studied by Hawkes
[10,12] for strictly α-stable Lévy processes in R, and by Khoshnevisan and Xiao
[15] for general Lévy processes. Their methods are based on potential theory of Lévy
processes. See Taylor [24] and Xiao [27] for further information on fractal properties
of Lévy processes, where several interesting open problems have remained unsolved.

Motivated by the research in [10,12,15], an interesting question would be to provide
a dimension formula for X−1(F) that holds simultaneously for all Borel sets F ⊂ R.
Such a stronger statement, if it is proved to hold, is customarily referred to as a uniform
dimension result. The uniform dimension result has a wide applicability because it
allows F to be random and dependent of the sample paths of X . For example, it allows
us to compute dimH X−1(F) when F = X(E), where E ⊂ [0,∞) is a Borel set.
More interestingly, the uniform dimension result is useful for the multifractal analysis
of stochastic processes. For instance, [13,19,21] studied the multifractal structures of
the local times at 0, denoted by {L(0, t), t ≥ 0}, of a Lévy process X = {X(t), t ≥ 0}
that hits points. See Sect. 4 for the definition and more information of local times of
Lévy processes. An open problem is to investigate the multifractal structures of the
local time processes {L(x, t), x ∈ R} (when t is fixed) or {L(x, t), t ≥ 0, x ∈ R}.
For any result on the fractal dimension of the set F of points x where L(x, t) has
certain (fast or slow) oscillation behavior, one can use the uniform dimension result
for the inverse images to derive the fractal dimension of the corresponding set of times
X−1(F). This is worthy to pursue, but is beyond the scope of this paper.

The uniform dimension result for the level set X−1(x) is also fundamental in the
geometric construction of the local times. Indeed, Barlow et al. [3] showed that a class
of Lévy processes {X(t), t ≥ 0} with local times {L(x, t), x ∈ R, t ≥ 0} satisfies

P
(
L(x, t) = Hφ([0, t] ∩ {s : X(s) = x}) for all x ∈ R, t ≥ 0

) = 1,

where φ is a sort of gauge function of the level sets. In other words, the local times
of X can be obtained level-wise by computing certain Hausdorff measure of the level
sets. Such a construction does not make sense if the uniform Hausdorff dimension
result for the inverse images does not hold.

This paper is concerned with the uniform Hausdorff and packing dimension results
for the inverse images of a symmetric Lévy process and continues the recent investi-
gation of Song et al. [22], who proved a uniform Hausdorff dimension result for the
inverse images of an α-stable Lévy process with 1 < α < 2, and the classical result
of Kaufman [14] for Brownian motion. Let us recall their results.

Theorem 1.1 ( [14,22]) Let X = {X(t), t ≥ 0} be a strictly α-stable Lévy process
with 1 < α ≤ 2. For any x ∈ R,

P
x
(
dimH X−1(F) = 1 − 1

α
+ dimH F

α
for all Borel sets F ⊆ R

)
= 1.

Our goal in the present paper is twofold. First, the proof of [22] relies on the
exact scaling property satisfied by strictly stable Lévy processes. We intend to show
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that certain weak asymptotic behavior of the characteristic exponent ψ (see below)
suffices to derive the uniform dimension result and such asymptotic behavior holds
for many interesting examples. Second, we consider not only Hausdorff dimension
but also packing dimension and thus provide two “dual” descriptions for the fractal
behavior of the inverse images of Lévy processes.

Let X = {X(t), t ≥ 0,Px } be a real-valued Lévy process with characteristic
(or Lévy) exponent ψ , that is, E0[eiλX(t)] = e−tψ(λ). Throughout the paper, X is
assumed to be symmetric, that is, X and −X have the same distribution under P0.
Consequently, ψ is real-valued and has the Lévy–Khintchine representation ψ(λ) =
1
2 Aλ2 + 2

∫ ∞
0 (1 − cos(xλ)) ν(dx), where A ≥ 0 is the variance parameter of the

Gaussian part of X and ν is called the Lévy measure satisfying ν({0}) = 0 and the
integrability condition

∫
R\{0}(1 ∧ x2)ν(dx) < ∞. We suppose that X is a pure-jump

Lévy process, i.e., A = 0.
Recall that a Borel measure μ on R is called unimodal with mode a if μ = cδa +

f (x)dx with c ≥ 0 and f increasing on (−∞, a), decreasing on (a,∞). Unimodality
is a time-dependent property for general Lévy processes. However, in the symmetric
case, it is known that the distribution of X(t) is unimodal for all t > 0 if and only
if the Lévy measure ν of X is unimodal [25, p. 488]. In such case, it makes sense to
say that X is a unimodal process. We refer to [20] for systematic accounts on Lévy
processes.

In order to state our main result, we recall the weak scaling conditions introduced
in [6].

Definition 1.2 We say that ψ : [0,∞) → [0,∞) satisfies the weak lower scaling
condition at infinity if there exist constants α ∈ R, θ ≥ 0, and c ∈ (0, 1] such that

ψ(λθ) ≥ cλαψ(θ), λ ≥ 1, θ > θ,

and write ψ ∈ WLSC(α, θ, c). We say ψ satisfies the weak upper scaling condition
at infinity if there exist α ∈ R, θ ≥ 0, and C ∈ [1,∞) such that

ψ(λθ) ≤ Cλαψ(θ), λ ≥ 1, θ > θ,

and write ψ ∈ WUSC(α, θ, C).
If θ = 0, we say that ψ satisfies the global weak lower scaling condition and the

θ = 0 case is called the global weak upper scaling condition.

It is clear that α ≤ α in Definition 1.2. The following Theorems 1.3 and 1.4 are the
main results of this paper. Theorem 1.3 extends [22, Th. 1.1], and Theorem 1.4 is new
even for Brownian motion. We use dimH and dimP to denote the Hausdorff dimension
and the packing dimension of a set, respectively.

Theorem 1.3 (i) Suppose that X is a unimodal symmetric pure-jump Lévy process in
R with the Lévy exponent ψ ∈ WLSC(α, 0, c) ∩WUSC(α, θ, C) with 1 < α < 2
and some constants θ > 0, c, and C. Then, we have for all x ∈ R

P
x
(
dimH X−1(F) ≤ 1 − 1

α
+ dimH F

α
for all Borel sets F ⊆ R

)
= 1. (1.1)
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(ii) Suppose that ψ ∈ WLSC(α, θ, c)∩WUSC(α, θ, C) with α ∈ (1, 2] and θ, θ > 0.
Then, we have

P
x
(
dimH X−1(F) ≥ 1 − 1

α
+ dimH F

α
for all Borel sets F ⊆ R

)
= 1. (1.2)

(iii) Suppose that ψ ∈ WLSC(α, 0, c) ∩ WUSC(α, θ, C) with α ∈ (1, 2) and θ > 0.
Then, we have

P
x
(
dimH X−1(F) = 1 − 1

α
+ dimH F

α
for all Borel sets F ⊆ R

)
= 1. (1.3)

Theorem 1.4 (i) Suppose that the condition of the first part of Theorem 1.3 holds.
Then, we have for all x ∈ R

P
x
(
dimP X−1(F) ≤ 1 − 1

α
+ dimP F

α
for all Borel sets F ⊆ R

)
= 1. (1.4)

(ii) Suppose that the condition of Part (ii) of Theorem 1.3 holds. Then, we have for all
x ∈ R

P
x
(
dimP X−1(F) = 1 − 1

α

+dimP F

α
for all Borel sets F ⊆ R with dimP F = dimH F

)
= 1. (1.5)

Remark 1.5 1. The condition that dimP F = dimH F in Theorem 1.4 is a regularity
condition on the set F and is technical in nature. Even though such condition is
satisfied by many fractal sets, it is natural to ask whether one may remove it. In
the case of Brownian motion, an affirmative answer can be proved by applying
its uniform modulus of continuity and the asymptotic property of its local times.
However, in the general Lévy processes, we have not been able to do so due to a
difficulty caused by the jumps of X .

2. Item (ii) of Theorem 1.4 follows from item (ii) of Theorem 1.3. Indeed,

dimP X−1(F) ≥ dimH X−1(F) ≥ 1 − 1
α

+ dimH F
α

= 1 − 1
α

+ dimP F
α

under
the regularity condition on F .

3. As explained in [22] when 0 < α < 1, the uniform Hausdorff dimension estimate
for the inverse images for symmetric stable processes cannot be true. Therefore,
one cannot expect Theorem 1.3 to hold when 0 < α < 1. The case for α = 1 is
still open even for the Cauchy process.

4. It is an interesting question to study the dimensions of X−1(F) when the upper
and lower scaling indices ofψ are different (i.e., α < α). In this case, it is possible
to extend Lemma 3.1 and Theorem 4.4 so that one can derive upper and lower
bounds for the Hausdorff and packing dimensions of X−1(F) in terms of α, α,
and the dimensions of F . However, since F may vary arbitrarily, there is no hope
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to obtain equalities in general. Hence, we have chosen to state Theorems 1.3 and
1.4 to give explicit formulae for dimH X−1(F) and dimP X−1(F).

5. Non-uniform dimension results on the inverse images of Lévy-type processes have
been obtained in [17], and it would be interesting to obtain uniform dimension
results for these processes.

The general strategy for proving Theorems 1.3 and 1.4 is similar to that of [22]. To
show the uniform (in set F) upper bounds in (1.1) and (1.4), we will prove a covering
principle for the inverse images X−1(F) by applying the recent contribution of [9]
on the hitting times of a class of Lévy processes. On the other hand, for proving the
lower bound in (1.2), we investigate regularity properties of the local time L(x, ·) of X ,
which can be extended to a Borel measure supported by the level sets of X . This allows
us to construct a family of randommeasures carried by the inverse image X−1(F) and
to establish the desired uniform lower bound by using Frostman’s lemma.

This paper is organized as follows. We present preliminary material in Sect. 2.
Theorems 1.3 and 1.4 are proved in Sects. 3 and 4, respectively. Some examples are
given in Sect. 5. Throughout the paper, for f , g : R → R, we write f 
 g if the ratio
of the two functions is bounded from above and from below by some positive finite
constants. Universal constants are denoted by c, C which may differ from line to line.
Specific constants are denoted by c1, c2, K1, K2, etc. Denote by E

x the expectation
with respect to Px and for simplicity, write P = P

0 and E = E
0.

2 Preliminaries

2.1 Fractal Dimensions

For definition of Hausdorff dimension, we refer to the monograph of Falconer [7]. In
the following, we recall from [7] the definition of packing measure and dimension.

Let s > 0 be a constant. For any F ⊆ R
d , the s-dimensional packing measure of

F is defined by

Ps(F) = inf

{ ∞∑

i=1

Ps
0(Fi ) : F ⊂

∞⋃

i=1

Fi

}

,

where Ps
0(F) =↓ limδ→0 Ps

δ (F) and

Ps
δ (F) = sup

{ ∞∑

i=1

(2ri )
s

}

,

where the supremum is taken over all collections {Bi } of disjoint balls of radii ri at
most δ with centers in F . The packing dimension of F is defined as

dimP F = sup{s ≥ 0 : Ps(F) = ∞} = inf{s ≥ 0 : Ps(F) = 0}.

123



2218 Journal of Theoretical Probability (2020) 33:2213–2232

It can be verified that the packing dimension is stable under countable union in the
sense that

dimP

( ∞⋃

i=1

Fi

)
= sup

i
dimP Fi . (2.1)

For any bounded set F ⊂ R
d , let Nδ(F) be the smallest number of sets of diameter

at most δ that covers F . Then, the upper box dimension of F is defined by

dimB F = lim sup
δ→0

ln Nδ(F)

− ln δ
.

Note that for any set F ⊂ R
d (see [7, Equation (3.27)])

dimH F ≤ dimP F ≤ dimB F . (2.2)

Moreover, packing and upper box dimensions are related by the following regular-
ization procedure (cf. [7]):

dimP F = inf

{
sup

n
dimB Fn : F ⊂

∞⋃

i=1

Fn

}
, (2.3)

where the infimum is taken over all {Fn} such that F ⊂ ⋃∞
i=1 Fn .

2.2 Weak Scaling Condition

Now, we focus on the weak scaling conditions. We start with some notation. Let
φ : [0,∞) → [0,∞) be a continuous and nondecreasing function. We define its
generalized inverse as

φ−1(u) = inf{s ≥ 0 : φ(s) ≥ u}, u ∈ [0, φ(∞)].

Note that φ−1 is nondecreasing and it is left continuous and has a right limit at every
point. Also, it is easy to see φ−1(φ(u)) ≤ u and φ(φ−1(u)) = u.

If φ is not necessarily nondecreasing, we define the maximal function φ∗ as

φ∗(y) = sup{φ(x) : 0 ≤ x ≤ y}.

Motivated by the relation inf{s : φ(s) ≥ u} = inf{s : φ∗(s) ≥ u}, we define
φ−1 := (φ∗)−1. Note that we still have φ−1(φ(u)) ≤ u and φ(φ−1)(u) = u.

Let us review some consequences of the weak scaling conditions. Each point is
used in a specific stage of the proof.

• The globalweak lower scaling condition implies an asymptotic result for the hitting
times of X on a compact interval, see Theorem 2.1 below.
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• We need in the proof that a re-scaled version of X , denoted by Yb =
{bX(b−αt), t ≥ 0} for the moment, satisfies P0(Yb(1) ∈ [2, 3]) > c uniformly
for all large b. This property is guaranteed whenever the characteristic exponent
of X satisfies ψ ∈ WLSC(α, θ, c) ∩ WUSC(α, θ, C) with 0 < α < 2 and that X
is unimodal, as suggested by Theorem 2.2 below.

Denote by TA = inf{t > 0 : X(t) ∈ A} the first hitting time of A ⊂ R by X . The
following theorem is taken from [9] which provides a sharp tail probability estimate
for the first hitting time of an interval.

Theorem 2.1 ( [9, Th. 5.5]) Suppose that ψ ∈ WLSC(α, 0, c) with α > 1. Then, for
any x ∈ R with |x | > R,

P
x (T[−R,R] > t) 
 V (|x | − R)K (|x |)

V (|x |)tψ−1(1/t)
∧ 1, t > 1/ψ∗(1/R),

where the comparability constant depends only on the scaling characteristics,

K (x) = 1

π

∫ ∞

0
(1 − cos xs)

1

ψ(s)
ds,

and V (x), x ≥ 0, is the potential measure of the interval [0, x] which satisfies

V (r) 
 1√
ψ∗(1/r)

.

Recall the following result on the lower bound for the transition density of unimodal
symmetric Lévy processes with the weak scaling properties.

Theorem 2.2 ( [6, Th. 21]) Let X be a unimodal symmetric Lévy process in R with
characteristic exponent ψ . If ψ ∈ WLSC(α, θ, c)∩WUSC(α, θ, C) with 0 < α, α <

2, then there exist constants c∗ and r0 such that the transition density p(t, x) satisfies

p(t, x) ≥ c∗
(

ψ−1(1/t) ∧ tψ∗(1/|x |)
|x |

)
if t > 0, tψ∗(θ/r0) < 1, and |x | < r0/θ.

3 Proof for the Upper Bounds

Let us start with the upper bound. We establish a covering principle for the inverse
images of X , which is a reminiscence of [22, Lemma 2.2]. Let Un be any partition of
Rwith intervals of length 2−n andDn(α) be any partition of [0,∞) with length 2−nα .

Lemma 3.1 Suppose that ψ ∈ WLSC(α, 0, c)∩WUSC(α, θ, C) with 1 < α < 2 and
for some constant θ > 0. Let δ > α−1 and T > 0. Px -a.s. for all integer n sufficiently
large and each U ∈ Un, X−1(U ) ∩ [0, T ) can be covered by 2 · 2nδ intervals from
Dn(α).
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Proof Step 1 For a fixed U ∈ Un , write U = (z − 2−n

2 , z + 2−n

2 ) for some z ∈ R.
Define τ0 = 0 and for all integer k ≥ 1,

τk = inf{s > τk−1 + 2−nα : X(s) ∈ U }

with the convention that inf ∅ = ∞. From the fact that X−1(U ) ⊂ ⋃∞
i=0[τi , τi +2−nα],

we note that for any T > 0,

{X−1(U ) ∩ [0, T ) cannot be covered by k intervals of length 2−nα} ⊂ {τk < T }.

Due to the right continuity of the sample paths of X , we observe that X(τk−1) belongs
to the closure of U as τk−1 < T . By the strong Markov property, we obtain

P
x (τk < T ) = P

x (τk < T |τk−1 < T )Px (τk−1 < T )

≤ sup
y∈U

P
y
(

inf
2−nα≤t≤T

|X(s) − z| ≤ 2−n

2

)
P

x (τk−1 < T )

≤ sup
y∈U

P
y
(

inf
2−nα≤t≤T

|X(s) − y| ≤ 2−n
)
P

x (τk−1 < T ).

Define a sequence of intermediate processes Yn = {2n X(2−nαt), t ≥ 0}. It follows
from the spatial homogeneity of Lévy processes that for any y ∈ R,

P
y
(

inf
2−nα≤t≤T

|X(s) − y| ≤ 2−n
)

= P

(
inf

1≤t≤T 2nα
|Yn(t)| ≤ 1

)
:= pn .

By induction, we obtain

P
x (τk < T ) ≤ pk

n .

Step 2 Now, we intend to prove that 1− pn ≥ CT 2−n(α−1), thus find an upper bound
for pn . Let T n

A be the hitting time of Yn to any interval A. Considering the complement
of the event associated with pn , we have by the independence of increments that

1 − pn ≥ P

(
2 ≤ |Yn(1)| ≤ 3, inf{t ≥ 1 : Yn(t) − Yn(1) ∈ [−4,−1]} ≥ T 2nα + 1

)

= P
(
2 ≤ |Yn(1)| ≤ 3

)
P
(
T n[−4,−1] > T 2nα

)
.

We proceed by looking for lower bounds for these events on Yn . First,

P(2 ≤ |Yn(1)| ≤ 3) = P(2 · 2−n ≤ |X(2−nα)| ≤ 3 · 2−n) ≥
∫ 3·2−n

2·2−n
p(2−nα, x)dx .

For n sufficiently large, 2−nαψ∗(θ/r0) < 1 and 3 · 2−n < r0/θ . Since ψ ∈
WLSC(α, 0, c) ∩ WUSC(α, θ, C) with 1 < α < 2, it follows from [6, Remark
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4] we have ψ−1 ∈ WUSC(1/α, 0, c−1/α) ∩ WLSC(1/α,ψ(θ), C
−1/α

). Note that
for x ∈ [2 · 2−n, 3 · 2−n] and t = 2−nα , we have ψ−1(2nα) 
 2n . Since
ψ ∈ WLSC(α, 0, c) ∩ WUSC(α, θ, C), together with [6, Proposition 2], we have
tψ∗(1/|x |)

|x | 
 2−n(α−1)ψ∗(2n) 
 2n . This shows that ψ−1(1/t) is comparable to
tψ∗(1/|x |)

|x | for t = 2−nα and x ∈ [2 · 2−n, 3 · 2−n]. It follows from Theorem 2.2

and the weak lower scaling property of ψ that p(2−nα, x) ≥ 2−nαψ∗(1/x)
x ≥ c2n on

x ∈ [2 · 2−n, 3 · 2−n]. Therefore,

P(2 ≤ |Yn(1)| ≤ 3) ≥ c > 0

uniformly for all sufficiently large n.
Second, observe that Yn under P has the characteristic exponent ψn(λ) =

2−nαψ(2nλ), and it is easy to check that ψn ∈ WLSC(α, 0, c) with the same scaling
characteristics as those of ψ . Hence, by applying the spatial homogeneity of X and
Theorem 2.1 with x = 5

2 , R = 3
2 , t = T 2nα , we arrive at

P

(
T n[−4,−1] > T 2nα

)
= P

5/2
(

T n[−3/2,3/2] > T 2nα
)


 1

T 2nαψ−1
n (T −12−nα)

.

Note that if f (x) = ah(bx), then f −1(x) = b−1h−1(a−1x). Applying this relation
to f = ψn , h = ψ , a = 2−nα , b = 2n , we obtain ψ−1

n (T −12−nα) = 2−nψ−1(2nα ·
T −12−nα) = 2−nψ−1(T −1). Therefore,

P

(
T n[−4,−1] > T 2nα

)

 CT 2

−n(α−1),

as desired.
Step 3 Define the event Aδ

n(T ) by

Aδ
n(T ) =

{
∃U ∈ Un ∩ [−K , K ] s.t. X−1(U ) ∩ [0, T ] cannot be
covered by 2nδ intervals of length 2−nα

}
,

where U ∈ Un ∩ [−K , K ] means that U ∈ Un and U ⊂ [−K , K ]. We have for
δ > α − 1,

∞∑

n=1

P
x (Aδ

n(T )) ≤
∞∑

n=1

2K2n(pn)2
nδ ≤ 2K

∞∑

n=1

2n(
1 − cT 2

−n(α−1))2nδ

= 2K
∞∑

n=1

exp
(

n(ln 2) − CT 2
n(δ−α+1)

)
< ∞.

The conclusion for all U ⊂ [−K , K ] ∩ Un follows from the Borel–Cantelli Lemma.
Letting K → ∞ completes the proof. ��
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Proof of Theorem 1.3 (i) Suppose that ψ ∈ WLSC(α, 0, c) ∩ WUSC(α, θ, C)). The
proof is similar to the proof of [22, Theorem 1.1], and we provide the details for the
reader’s convenience. Let F be any Borel set and take γ > dimH F and δ > α − 1.
There exists a sequence of intervals {Ui } of length 2−ni such that F ⊂ ∪∞

i=1Ui and∑∞
i=1 2

−ni γ < 1. For any T > 0 it follows from Lemma 3.1, we have

X−1(F) ∩ [0, T ] ⊂
∞⋃

i=1

2·2ni δ⋃

k=1

Ii,k,

where Ii,k are in Dni (α). This implies

∞∑

i=1

2·2ni δ∑

k=1

diam(Ii,k)
γ+δ
α = 2 · 2ni δ

∞∑

i=1

(2−ni α)
γ+δ
α = 2

∞∑

i=1

2−ni γ < ∞.

Hence,

dimH

(
X−1(F) ∩ [0, T ]

)
≤ γ + δ

α
.

Letting γ ↓ dimH F , δ ↓ α − 1, and T ↑ ∞ (all along rational numbers) gives

dimH X−1(F) ≤ dimH F + α − 1

α
.

��
Now, we establish the upper bound for the packing dimension. By the second point

of Remark 1.5, it suffices to prove the upper bound of Theorem 1.4.

Proof of Theorem 1.4 (i) We will first prove that for any given T > 0,

P
x

(

dimB(X−1(F) ∩ [0, T ]) ≤ 1 − 1

α
+ dimB(F)

α

)

= 1. (3.1)

Let θ > dimB(F) so that

N2−n (F)2−nθ → 0 as n → ∞.

Then, there exist intervals {Ui } with length 2−n such that F ⊂ ∪N2−n (F)

i=1 Ui . Let
δ > α − 1. It follows from Lemma 3.1 that for all n sufficiently large,

X−1(F) ∩ [0, T ] ⊆
N2−n (F)⋃

i=1

(
X−1(Ui ) ∩ [0, T ]

)
⊆

N2−n (F)⋃

i=1

2·2nδ⋃

k=1

Vik,
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where |Vik | = 2−nα . Hence,

N2−nα (X−1(F) ∩ [0, T ]) ≤ 21+nδ N2−n (F).

Let d = θ+δ
α

. Then, we have

N2−nα (X−1(F) ∩ [0, T ])(2−nα)d ≤ 2N2−n (F)2−nθ → 0 as n → ∞

and this implies that dimB X−1(F)∩[0, T ] ≤ d a.s. Letting θ ↓ dimB(F) and δ ↓ α−1
proves (3.1).

Now, take any cover of F ⊂ ⋃
Fn . It follows from (2.1), (2.2), and (3.1) that

dimP

(
X−1(F) ∩ [0, T ]) ≤ dimP

∞⋃

n=1

(
X−1(Fn) ∩ [0, T ])

= sup
n

dimP

(
X−1(Fn) ∩ [0, T ])

≤ sup
n

dimB

(
X−1(Fn) ∩ [0, T ]) ≤ 1 − 1

α
+ dimB Fn

α
.

(3.2)

Since the left hand side of (3.2) does not depend on {Fn}, an application of (2.3) yields

P
x
(
dimP

(
X−1(F) ∩ [0, T ]

)
≤ 1 − 1

α
+ dimP F

α

)
= 1.

Finally, we let T → ∞ and this proves (1.4). ��

4 Proof for the Lower Bound

We move to prove the lower bound in (1.2). We first establish a uniform Hölder-type
condition for the local times of such processes by using the method of moments which
is similar to Khoshnevisan et al. [16] or Xiao [26].

We first recall the lower index β low of an arbitrary Lévy process introduced by
Blumenthal and Getoor [4],

β low = sup
{
γ ≥ 0 : lim|ξ |→∞ ‖ξ‖−γReψ(ξ) = ∞

}
,

where Reψ(ξ) represents the real part of its argument. Since the process X is symmet-
ric, we have Reψ(ξ) = ψ(ξ). Also, notice that when ψ ∈ WLSC(α, θ, c) we have
β low ≥ α.

Let A ⊂ [0,∞) be a Borel set and define the occupation measure μA(·) by

μA(·) = m
({t ∈ A : X(t) ∈ ·}),
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where m(·) is the Lebesgue measure in R. For any Borel set A ⊂ [0,∞), if μA � m,
then we define a local time of X on A by

L(x, A) := dμA

dm
(x).

In this paper, we only consider A = [0,∞) and, in this case, Hawkes [11] showed that
a necessary and sufficient condition for the existence of local times of a Lévy process
X with exponent ψ is Re

( 1
1+ψ(ξ)

) ∈ L1(R). We will write L(x, t) for L(x, [0, t]).
If there is a modification of the local time such that it is continuous in (x, t), we say
that X has a jointly continuous local time. Necessary and sufficient conditions for the
joint continuity of the local times of Lévy processes have been proved by Barlow and
Hawkes [2], Barlow [1], and by Marcus and Rosen [18] using different methods.

Since ψ ∈ WLSC(α, 0, c), it follows from [16, Theorem 2.1] that there exists a
square integrable local time for X . We also note that under the current setting (with
N = 1) the proof of [16, Theorem 3.2] holds true. Consequently, [16, Equations (3.16)
and (3.17)] hold true as well. This establishes the following estimates for the local
time of X .

Lemma 4.1 [16, Lemma 4.2] Suppose that X is a symmetric unimodal Lévy process
and ψ ∈ WLSC(α, θ, c) with α > 1. For any γ ∈ (0, α−1

2 ), there exist constants
b1, b2 > 0 and 0 < K1, K2 < ∞ such that for any interval I = [a, a + h], a ≥ 0,
x, y ∈ R, and u > 0,

P

(
L(Xt + x, I ) ≥ h1− 1

α u
1
α

)
≤ K1e−b1u,

and

P

(
|L(Xt + x, I ) − L(Xt + y, I )| ≥ h1− 1+γ

α |x − y|γ u
1+γ
α

)
≤ K2e−b2u,

where either t = 0 or a.

We need to estimate the local oscillation of the process X , which is given in the
following lemma. It is a direct consequence of a general result for Lévy-type processes.

Lemma 4.2 [5, Th. 5.1] Assume that X is a symmetric Lévy process. Then, there exists
a constant c such that for any t, r > 0,

P

(
sup

0≤s≤t
|X(s)| > r

)
≤ ctψ∗(1/r).

If ψ ∈ WUSC(δ, θ, C), we have a versatile version of Lemma 4.2.

Lemma 4.3 Suppose that ψ ∈ WUSC(δ, θ, C) with δ ∈ (0, 2]. Then, for r ≤ 1
θ

, we
have

P

(
sup

0≤s≤t
|X(s)| > r

)
≤ ctr−δ.
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Proof Applying [8, Proposition 1] to our process X , we have

ψ∗(|x |) ≤ 12ψ(x), x ∈ R. (4.1)

Hence, it follows from Lemma 4.2, the weak upper scaling condition, and (4.1) that
for r ≤ 1

θ

P

(
sup
s≤t

|X(s)| > r

)
≤ Ctψ∗(1/r) ≤ 12Ctψ(1/r) ≤ c tψ(θ)θ

−δ
r−δ.

This proves lemma. ��
Now, we are ready to prove a uniform Hölder condition for the local times for X .

The proof is similar to that of [16, Theorem 4.3] or [26, Theorems 1.1 and 1.2] with
obvious modifications. We provide the details for the reader’s convenience. For an
interval I ⊂ [0,∞), we define L∗(I ) = supx∈R L(x, I ) to be the maximum local
time of X on I .

Theorem 4.4 Suppose that X is a symmetric unimodal Lévy process in R and its
characteristic exponent ψ satisfies

ψ ∈ WLSC(α, θ, c) ∩ WUSC(α, θ, C)

with α > 1 and for some constants c, C > 0. Let L be its jointly continuous local time
and fix τ > 0 and N > 0. Then, we have

lim sup
r→0

L∗([τ − r , τ + r ])
r1− 1

α (ln ln r−1)
1
α

< ∞, (4.2)

and

lim sup
r→0

sup
I⊂[0,N ],m(I )<r

L∗(I )

r1− 1
α ln(r−1)

1
α

< ∞. (4.3)

Proof We first prove (4.2). Let g(r) = r1− 1
α (ln ln 1

r )
1
α and Cn = [s, s + 1

2n ] for any
s ≥ 0. We will prove that

lim sup
n→∞

L∗(Cn)

g(2−n)
< ∞. (4.4)

Since 2−n/αnβ < θ for all but finitely many n’s, it follows from Lemma 4.3 and the
fact ψ ∈ WUSC(α, θ, C) that for all sufficiently large n,

P

(
sup
t∈Cn

|Xt − Xs | > 2−n/αnβ
)

≤ 2−n(2−n/αnβ)α = n−αβ.
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We choose β > 1
α
. Then, the Borel–Cantelli lemma gives that a.s.

sup
t∈Cn

|Xt − Xs | ≤ 2−n/αnβ

for all but finitely many n’s.
Now, let θn := 2−n/α(ln n)−1/α . Define

Gn = {x : |x | ≤ 2−n/αnβ, x = pθn for some p ∈ Z}.

Note that the number of elements in Gn is at most 2−n/αnβ

θn
= nβ(ln n)1/α . Choose

a constant a1 so that b1a1 − β > 1, where b1 is a constant from Lemma 4.1. Then,
Lemma 4.1 implies

P

(
max
x∈Gn

L(Xs + x, Cn) ≥ a1/α
1 g(2−n)

)

= P

(
max
x∈Gn

L(Xs + x, Cn) ≥ (2−n)1−
1
α (a1 ln ln 2

n)1/α
)

= (# of elements in Gn) × K1e−b1a1 ln ln 2n

≤ nβ(ln n)1/α × K1e−b1a1 ln ln 2n = K1e−b1a1 ln ln 2(ln n)1/αn−(b1a1−β),

and since b1a1 − β > 1, we have
∑∞

n=1 K1e−b1a1 ln ln 2(ln n)1/αn−(b1a1−β) < ∞.
Hence, again the Borel–Cantelli lemma yields

max
x∈Gn

L(Xs + x, Cn) < a1/α
1 g(2−n) (4.5)

for all but finitely many n’s.
Choose γ so that γ < α−1

2 . Let

Bn =
∞⋃

k=1

⋃

y1,y2

{
|L(Xs + y1, Cn) − L(Xs + y2, Cn)|

≥ (2−n)1−
1+γ
α |y1 − y2|γ (a2k ln n)

1+γ
α

}
,

where y1 and y2 are lattice points in Gn that satisfy y1 − y2 = θn2−k . Note that for
each k there are 2k such pairs of y1 and y2. It follows from Lemma 4.1 that

P(Bn) = nβ(ln n)
1
α

∞∑

k=1

2k K2e−b2a2k ln n ≤ 3K2(ln n)
1
α n−(b2a2−β),
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where we have used the fact that

∞∑

k=1

2kn−b2a2k =
∞∑

k=1

(
2

nb2a2

)k

=
2

nb2a2

1 − 2
nb2a2

= 2

nb2a2 − 2
≤ 3n−b2a2

for all sufficiently large n. Hence, by taking a2 so that b2a2 − β > 1 we have by the
Borel–Cantelli lemma

P

(
lim sup

n
Bn

)
= 0.

Now, suppose that |y| < 2− n
α nβ . Then, we can express y as y = limk→∞ yk , where

y0 = x and yk = x + θn
∑k

j=1 ε j2− j . Hence, it follows from the triangular inequality

that on the event
{
lim supn Bn

}c and n sufficiently large,

|L(Xs + y, Cn) − L(Xs + x, Cn)|

≤
∞∑

k=1

|L(Xs + yk, Cn) − L(Xs + yk−1, Cn)|

≤
∞∑

k=1

(2−n)1−
1+γ
α |yk − yk−1|γ (a2k ln n)

1+γ
α

≤
∞∑

k=1

(2−n)1−
1+γ
α

(
2− n

α (ln n)−
1
α 2−k

)γ

(a2k ln n)
1+γ
α

= (2−n)1−
1
α (ln n)

1
α a

1+γ
α

2

∞∑

k=1

2−kγ k
1+γ
α ≤ c g(2−n)

(4.6)

for some finite constant c > 0. Hence, (4.4) follows from (4.5) and (4.6).
Next, we prove (4.3). For simplicity, we may and will assume that I ⊂ [0, 1].

Let Dn be a collection of 2n non-overlapping intervals in [0, 1] of length 1
2n . Define

h(r) = r1− 1
α (ln r−1)

1
α . Let ηn := 2− n

α n− 1
α and define

Hn := {x ∈ R : |x | ≤ n, x = ηn p, p ∈ Z}.

Note that the cardinality #(Hn) of Hn satisfies

#Hn ≤ 2n

ηn
= 2n

2− n
α n− 1

α

= 2n1+ 1
α 2

n
α .

123



2228 Journal of Theoretical Probability (2020) 33:2213–2232

It follows from Lemma 4.1 that

P

(
max
x∈Hn

L(x, B) ≥ a
1
α

3 h(2−n) for some B ∈ Dn

)

≤ P

(
max
x∈Hn

L(x, B) ≥ (2−n)1−
1
α (a3n ln 2)

1
α for some B ∈ Dn

)

≤ 2n1+ 1
α 2

n
α × 2n K1e−b1a3n ln 2 = 2K1n1+ 1

α 2−n(a3b1− 1
α
).

Hence, by taking a3 so that a3b1 − 1
α

> 0, we have

max
x∈Hn

L(x, B) < a
1
α

3 h(2−n) for all B ∈ Dn (4.7)

for all sufficiently large n.
Let

Dn =
∞⋃

k=1

⋃

y,y′

{ ∣∣L(y, B) − L(y′, B)
∣∣

≥ (2−n)1−
1+γ
α |y − y′|γ (a4kn)

1+γ
α for some B ∈ Dn

}
,

where y and y′ are lattice points in Hn that satisfy y − y′ = ηn2−k . Hence, by Lemma
4.1, we have

P(Dn) ≤ 2n1+ 1
α 2

n
α

∞∑

k=1

2ke−b2a4kn = 2n1+ 1
α 2

n
α

∞∑

k=1

(
2

eb2a4n

)k

≤ 2n1+ 1
α 2

n
α

2
e−b2a4n

1 − 2
e−b2a4n

= 2n1+ 1
α 2

n
α

2

eb2a4n + 2

≤ 6n1+ 1
α 2

n
α e−b2a4n ≤ 6n1+ 1

α e−n(b2a4− ln 2
α

)

for all sufficiently large n’s. By taking a4 so that b2a4 − ln 2
α

> 0, we see from the
Borel–Cantelli lemma that P

(
lim supn Dn

) = 0.
By Lemma 4.2, we have

P

(
sup

0≤t≤1
|Xt | = ∞

)
= lim

n→∞P

(
sup

0≤t≤1
|Xt | > n

)
≤ lim

n→∞ cψ∗(1/n) = 0.

Hence, P(sup0≤t≤1 |Xt | < ∞) = 1 and a.s. for each ω there exists n such that
sup0≤t≤1 |Xt | ≤ n. Hence, for n sufficiently large, if |y| > n, then L(y, [0, 1]) = 0.
For |y| ≤ n, on the event

{
lim supn Dn

}c, we can express y as y = limk→∞ yk with
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y0 = x as before. Hence, for any B ∈ Dn and x ∈ Hn , we have

|L(x, B) − L(y, B)| =
∞∑

k=1

|L(yk, B) − L(yk−1, B)|

≤
∞∑

k=1

(2−n)1−
1+γ
α |yk − yk−1|γ (a4kn)

1+γ
α

≤
∞∑

k=1

(2−n)1−
1+γ
α

∣∣∣2− n
α n− 1

α 2−k
∣∣∣
γ

(a4kn)
1+γ
α

= a
γ
α

4 (2−n)1−
1
α n

1
α

∞∑

k=1

2−kγ k
1+γ
α ≤ c2h(2−n)

(4.8)

for some constant c2 > 0. Now, (4.3) follows from (4.7) and (4.8). ��

The following lemma is an analog of [22, Lemma 3.1].

Lemma 4.5 Suppose that ψ ∈ WUSC(α, θ, C) and let γ < 1
α

. Then, there exists a
constant K such that Px -a.s., for all n sufficiently large, X(I ) can be covered by K
intervals of length 2−nγ for all I ∈ Cn.

Proof It follows from Lemma 4.3 that for all n such that 2−n ≤ 1
θ

P
x
(

sup
0≤s≤2−n

|Xs − x | ≥ 2−nγ

)
≤ c2−n(2−nγ )−α = c2−n(1−γα).

Now, the conclusion of lemma follows from [23, Lemma 2.1]. ��

Now, we are ready to prove Theorem 1.3 (ii).

Proof of Theorem 1.3 (ii) The proof is almost identical to the proof of [22, Theorem
1.1] using Theorem 4.4 and Lemma 4.5 instead of [22, Lemmas 3.1 and 3.2] and
we briefly sketch main steps. For any Borel set F ⊂ R, one can find a proba-
bility measure μ supported on F with μ(B) ≤ diam(B)dimH F−ε for any B with
diam(B) ≤ 1. Define a measure λ supported on R

+ as in [22, Equation (3.2)].
Then, using Theorem 4.4 and Lemma 4.5, one can argue that the measure λ satis-

fies λ(B) ≤ diam(B)1−
1
α
+γ dimH F−2ε for any γ < 1/α and all Borel sets B with

sufficiently small diameter. This shows

P
x
(
dimH X−1(F) ≥ 1 − 1

α
+ γ dimH F − 2ε for all compact Borel sets F

)
= 1

and letting γ ↑ 1
α
, then ε ↓ 0 establishes the claim. ��
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5 Examples

In this section, we provide some interesting examples to illustrate applications of the
results of this paper. We recall from [6] that a function f : I → R is said to be almost
increasing with a factor c ∈ (0, 1] if c f (x) ≤ f (y) for all x, y ∈ I and x ≤ y.
A function f : I → R is said to be almost decreasing with a factor C ∈ [1,∞)

if C f (x) ≥ f (y) for all x, y ∈ I and x ≤ y. Finally, we recall the following
characterizations for weakly scaling conditions.

Lemma 5.1 [6, Lemma 11] We have φ ∈ WLSC(α, θ, c) if and only if φ(θ) = κ(θ)θα

and κ is almost increasing on (θ,∞) with an oscillation factor c. Similarly, φ ∈
WUSC(α, θ, C) if and only if φ(θ) = κ(θ)θα and κ is almost decreasing on (θ,∞)

with an oscillation factor C.

1. Symmetric stable processes
Let XSS be a symmetric stable Lévy process in R. The characteristic exponent of
X is ψSS(ξ) = |ξ |α , α ∈ (0, 2]. When α = 2, XSS is a Brownian motion whose
sample paths are continuous, which we exclude in this paper.
If α ∈ (1, 2), then clearly |ξ |α ∈ WUSC(α, 0, 1) ∩ WLSC(α, 0, 1). Hence, (1.3)
and (1.5) hold.

2. Relativistic stable processes
Let XRS be the relativistic stable process with mass m in R. The characteristic
exponent of X is given by

ψRS(ξ) = (ξ2 + m2/α)α/2 − m, ξ ∈ R
1, m > 0.

Write

ψRS(ξ) = |ξ |ακ1(ξ), κ1(ξ) = (ξ2 + m2/α)α/2 − m

|ξ |α .

It is easy to check that

lim
ξ→∞ κ1(ξ) = 1, (5.1)

and

lim
ξ→0

κ1(ξ)

|ξ |2−α
= lim

ξ→0

(
m(

|ξ |2
m2/α + 1)2/α − m

)

|ξ |2 = 2

αm2/α . (5.2)

If follows from (5.1) and (5.2), κ1(ξ) is almost increasing on (0,∞) and is almost
decreasing on (θ,∞) for some θ > 0. This shows that ψRS ∈ WLSC(α, 0, c) ∩
WUSC(α, θ, C1) from Lemma 5.1. Hence, when α ∈ (1, 2), (1.3) and (1.5) hold.

3. Truncated stable processes
Let XTS be the truncated stable Lévy process. The characteristic exponent of XTS
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is given by

ψTS(ξ) =
∫

{0<|y|≤1}
(1 − cos(yξ))

c(α)

|y|1+α
dy,

where c(α) is a constant so that
∫
R\{0}(1 − cos(yξ))

c(α)

|y|1+α dy = 1. By the change

of variable y = x
|ξ | , we observe that

ψTS(ξ) = c(α)|ξ |α
∫

{0<|x |≤|ξ |}

1 − cos( ξ x
|ξ | )

|x |1+α
dx .

Hence, we have ψTS(ξ) ∼ |ξ |α as ξ → ∞. Since 1− cos( ξ x
|ξ | ) ∼ |x |2 as |x | → 0,

we observe that ψTS(ξ) ∼ c(α)|ξ |2 as ξ → 0. Write ψTS(ξ) as

ψTS(ξ) = |ξ |ακ2(ξ).

Then, we observe that

lim
ξ→0

κ2(ξ) = lim
ξ→0

ψTS(ξ)

|ξ |α = 0 and lim
ξ→∞ κ2(ξ) = 1.

Hence, we see that κ2(ξ) is almost increasing on (0,∞) and is almost decreas-
ing on (θ,∞) for some θ > 0. This shows that ψTS(ξ) ∈ WLSC(α, 0, c) ∩
WUSC(α, θ, C1). Hence, we conclude that (1.3) and (1.5) hold.
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