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Introduction
Stochastic processes are often used in various fields within mathe-

matics and probability theory. In particular, Markov chains are pow-
erful tools due to their memorylessness. This property allows one to
predict the future based solely on the present state. Through this
condition, it is possible to determine if a state is recurrent or tran-
sient in a given state-space; either the chain returns to the state ad
infinitum or the chain will never return to the state after finitely many
steps.

Not only will we provide a formal written proof utilizing the
Markov property, we have also developed Python simulations to il-
lustrate recurrence and transience in real-life scenarios. These ex-
amples are symmetric random walks on d-dimensional integer lat-
tices.

This simulation helps us to classify recurrence further into either
a null recurrence, the expected number of steps to return to where
the chain started is infinite, or a positive recurrence, the expected
number of steps is finite. We show by an example that in the null re-
currence case, the chain returns to the starting point but the number
of steps can be very large.

Research Questions
1. How can one determine whether a given state is recurrent and

transient?

2. Which symmetric random walks on d-dimensional integer lattices
are recurrent?

3. Use Python to simulate random walks and test whether given ran-
dom walks are recurrent.

Materials and Methods
The Markov Property says that the conditional probability distri-

bution of future states of the process depends only upon the present
state and not the past history of the chain. More precisely,

P(Xn+1 = in+1|X0 = i0, · · · ,Xn = in) = pin,in+1
.

The definition of recurrence and transience are as follows:

A state i is recurrent if Pi(Xn = i for infinitely many n) = 1,

and

A state i is transient if Pi(Xn = i for infinitely many n) = 0.

Here is a useful characterization of recurrence and transience. Let
Ti = inf{n ≥ 1 : Xn = i} be the first return time to i.

If Pi(Ti <∞) = 1, then i is recurrent and
∞∑
n=1

p
(n)
ii =∞,

If Pi(Ti <∞) < 1, then i is transient and
∞∑
n=1

p
(n)
ii <∞.

Figure 1: Code used for a one-dimensional random walk.

Finite Markov Chains
It is easy to identify recurrent and transient states in a finite, closed
Markov chain.

No matter where the chain starts, eventually, after sufficiently
many steps, the chain will only reside in states 5 and 6. In general,
every finite closed class is recurrent.

Mathematical Proof
We will prove the case that a symmetric 1D Random Walk is recur-

rent. Consider we start at the state zero. Then we are interested in
the probability that starting from zero, we reach zero after n-steps.
Since it is only possible to return to said state in an even number of
steps, we can express p as such:

p(2n)00 =

(
2n

n

)
pnqn =

(2n)!

(n!)2
(pq)n.

Stirling’s Formula provides approximations for large n! values:

n! ≈
√
2nπ(

n

e
)n.

Hence,

p(2n)00 =
(2n)!

(n!)2
(pq)n ≈ (4pq)n√

nπ
.

In the symmetric case, we have p = q = 1
2. Therefore,

p(2n)00 ≥ (4pq)n√
nπ

=
1√
nπ
.

This implies that
∞∑
n=N

p
(2n)
00 ≥ 1√

π

∞∑
n=N

1√
n
=∞.

Hence the symmetric random walk is recurrent by definition. If p
6= q, then the 1D random walk is transient because of a convergent
geometric summation.

The symmetric 2D random walk is also recurrent:

p(2n)00 =

((
2n

n

)(
1

2

)2n
)2

≈ 1

π2n
.

1D Random Walk
We have proven that a 1D random walk should be recurrent. Con-

sider a simple case.

Figure 2: This is one trial over the course of a 1,000 step uninterrupted.

We can use Python to run thousands of trials to see if this 1D ran-
dom walk is recurrent consistently.

Figure 3: 1,000 Trials for a 1D random walk. Notice the spikes in particular.

This random walk is certainly recurrent; however, there are some
outliers. Despite the majority of these trials returning to the origin,
several do not reach the desired state. Even if we increase the num-
ber of steps, this trends continues. It seems the expectation to reach
the starting state may be infinite.

2D Random Walk
A similar trend occurs in the recurrent 2D Random Walk. Due to

the dimensionality, We will illustrate this property using a marginal
plot using scipy.stats in Python.

Figure 4: Based on the scatter-plot alone, it seems very few trials returned to the
origin. This is why a density plot is needed to illustrate recurrence.

Figure 5: The color gradient indicates the density of points on the xy-plane. The
lightest color represents the neighborhood around the origin. For this simulation,
7,418 trials returned to the origin.

Null and Positive Recurrence
We say a recurrent state i is positive recurrent or null recurrent if

Ei[Ti] <∞ or Ei[Ti] =∞, respectively.

An irreducible Markov chain is positive recurrent if and only if it
has a unique invariant distribution λP = λ. In 1D Random Walk,
there is no invariant distribution and this shows that the chain is null
recurrent.

Forthcoming Research
• Study continuous time analogues (continuous time Markov chain)

of discrete time Markov chains. This is important since most real
world examples are modeled in a continuous time.

• If the increment of the process is independent and stationary, it is
called Lévy processes. It is an active field of research and it is a
natural object to study.
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